Classifying simulated and physiological heart rate variability signals

被引:10
|
作者
Wessel, N [1 ]
Malberg, H [1 ]
Meyerfeldt, U [1 ]
Schirdewan, A [1 ]
Kurths, J [1 ]
机构
[1] Univ Potsdam, Potsdam, Germany
来源
关键词
D O I
10.1109/CIC.2002.1166725
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The main intention of this contribution is to sketch our way of analysing the 50 time series from the 2002 Computers in Cardiology challenge. The task to cope is to discriminate simulated and physiological heart rate variability signals. Our approach for doing this is rather simple: We exclude time series which show non-physiological behaviour. The methods applied serve to quantify the distribution of the RR-intervals, the circadian beat-to-beat variability as well as the beat-to-beat dynamics. Using cut-offs for these parameters, both time series groups can be discriminated clearly. Thus, the intricate interdependencies of variations in heart rate variability data on different scales are still difficult to simulate, such that even an experienced observer may be misled easily. To demonstrate the suitability of our methods not only for characterising simulated and physiological data, an outline of further applications shall be given.
引用
收藏
页码:133 / 135
页数:3
相关论文
共 50 条
  • [1] Classifying some cardiac abnormalities using heart rate variability signals
    Obayya, Marwa
    Abou-Chadi, Fatma
    PROCEEDINGS OF THE 25TH NATIONAL RADIO SCIENCE CONFERENCE: NRSC 2008, 2008,
  • [2] Physiological factors influencing heart rate variability
    Braune, HJ
    KLINISCHE NEUROPHYSIOLOGIE, 1998, 29 (03) : 168 - 172
  • [3] HEART RATE VARIABILITY AND EXERCISE, IS THERE A PHYSIOLOGICAL BASIS?
    Calderon, F. J.
    Cupeiro, R.
    Peinado, A. B.
    Lorenzo-Capella, I
    REVISTA INTERNACIONAL DE MEDICINA Y CIENCIAS DE LA ACTIVIDAD FISICA Y DEL DEPORTE, 2020, 20 (78): : 299 - 320
  • [4] Comparison of PPG Signals with i-PPG signals for the calculation of heart rate and heart rate variability
    Dharshini, A. S. Kaviya
    Jeeva, J. B.
    OPTICS COMMUNICATIONS, 2025, 580
  • [5] Periodogram and AR spectral analysis of simulated heart rate variability signals generated by IPFM or MIPFM models
    Zhang, R.
    Huang, J.
    Zhang, L.
    Chinese Journal of Biomedical Engineering, 1995, 14 (03): : 241 - 247
  • [6] On the Heart rate variability and Pulse rate variability evaluations based on electrocardiographic and photoplethysmographic signals
    Podaru, Alexandru Constantin
    David, Valeriu
    2021 12TH INTERNATIONAL SYMPOSIUM ON ADVANCED TOPICS IN ELECTRICAL ENGINEERING (ATEE), 2021,
  • [7] Heart Rate Variability at Rest Predicts Heart Response to Simulated Diving
    Malinowski, Krzysztof S.
    Wierzba, Tomasz H.
    Neary, J. Patrick
    Winklewski, Pawel J.
    Wszedybyl-Winklewska, Magdalena
    BIOLOGY-BASEL, 2023, 12 (01):
  • [8] Physiological background of the heart rate variability spectral components
    Malliani, A
    Montano, N
    Pagani, M
    CARDIAC ARRHYTHMIAS, PACING & ELECTROPHYSIOLOGY: THE EXPERT VIEW, 1998, 201 : 185 - 191
  • [9] The physiological basis and measurement of heart rate variability in humans
    Adina E. Draghici
    J. Andrew Taylor
    Journal of Physiological Anthropology, 35
  • [10] Block entropy analysis of Heart Rate Variability signals
    Karamanos, K.
    Nikolopoulos, S.
    Hizanidis, K.
    Manis, G.
    Alexandridi, A.
    Nikolakeas, S.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (07): : 2093 - 2101