Algebraic multigrid, mixed-order interpolation, and incompressible fluid flow

被引:3
|
作者
Webster, R.
机构
关键词
algebraic multigrid; fully coupled solutions; Navier-Stokes; NAVIER-STOKES PROBLEMS; SMOOTHED AGGREGATION; SOLVERS; APPROXIMATION; PERFORMANCE;
D O I
10.1002/nla.645
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents the results of numerical experiments on the use of equal-order and mixed-order interpolations in algebraic multigrid (AMG) solvers for the fully coupled equations of incompressible fluid flow. Several standard test problems are addressed for Reynolds numbers spanning the laminar range. The range of unstructured meshes spans over two orders of problem size (over one order of mesh bandwidth). Deficiencies in performance are identified for AMG based on equal-order interpolations (both zero-order and first-order). They take the form of poor, fragile, mesh-dependent convergence rates. The evidence suggests that a degraded representation of the inter-field coupling in the coarse-grid approximation is the cause. Mixed-order interpolation (first-order for the vectors, zero-order for the scalars) is shown to address these deficiencies. Convergence is then robust, independent of the number of coarse grids and (almost) of the mesh bandwidth. The AMG algorithms used are reviewed. Copyright (C) 2009 John Wiley & Sons, Ltd.
引用
收藏
页码:17 / 42
页数:26
相关论文
共 50 条
  • [1] Mixed-order interpolation for the Galerkin coarse-grid approximations in algebraic multigrid solvers
    Webster, R.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2011, 67 (02) : 175 - 188
  • [2] Algebraic multigrid and incompressible fluid flow
    Webster, R.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2007, 53 (04) : 669 - 690
  • [3] Algebraic multigrid and 4th-order discrete-difference equations of incompressible fluid flow
    Webster, R.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2010, 17 (04) : 655 - 676
  • [4] A SBFEM formula for the mixed-order hexahedron interpolation based on serendipity elements
    Nie, Xiupeng
    Zou, Degao
    Chen, Kai
    Kong, Xianjing
    Yi, Guoyang
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2024, 164
  • [5] A mixed-order interpolation solid element for efficient arterial wall simulations
    Alvarez, L. A. Mansilla
    Ares, G. D.
    Feijoo, R. A.
    Blanco, P. J.
    COMPUTATIONAL MECHANICS, 2024, 73 (01) : 67 - 87
  • [6] A mixed-order interpolation solid element for efficient arterial wall simulations
    L. A. Mansilla Alvarez
    G. D. Ares
    R. A. Feijóo
    P. J. Blanco
    Computational Mechanics, 2024, 73 : 67 - 87
  • [7] A Parallel Implementation of the Algebraic Multigrid Method for Solving Problems in Dynamics of Viscous Incompressible Fluid
    K. N. Volkov
    A. S. Kozelkov
    S. V. Lashkin
    N. V. Tarasova
    A. V. Yalozo
    Computational Mathematics and Mathematical Physics, 2017, 57 : 2030 - 2046
  • [8] A Parallel Implementation of the Algebraic Multigrid Method for Solving Problems in Dynamics of Viscous Incompressible Fluid
    Volkov, K. N.
    Kozelkov, A. S.
    Lashkin, S. V.
    Tarasova, N. V.
    Yalozo, A. V.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2017, 57 (12) : 2030 - 2046
  • [9] Algebraic multigrid based on element interpolation (AMGE)
    Brezina, M
    Cleary, AJ
    Falgout, RD
    Henson, VE
    Jones, JE
    Manteuffel, TA
    McCormick, SF
    Ruge, JW
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 22 (05): : 1570 - 1592
  • [10] ON THE IDEAL INTERPOLATION OPERATOR IN ALGEBRAIC MULTIGRID METHODS
    Xu, Xuefeng
    Zhang, Chen-Song
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (03) : 1693 - 1710