An Automated Quiet Sleep Detection Approach in Preterm Infants as a Gateway to Assess Brain Maturation

被引:55
作者
Dereymaeker, Anneleen [1 ]
Pillay, Kirubin [2 ]
Vervisch, Jan [1 ,3 ]
Van Huffel, Sabine [4 ,5 ]
Naulaers, Gunnar [1 ]
Jansen, Katrien [1 ,3 ]
De Vos, Maarten [2 ]
机构
[1] Univ Leuven, Univ Hosp Leuven, Neonatal Intens Care Unit, Dept Dev & Regenerat,KU Leuven, Leuven, Belgium
[2] Univ Oxford, Dept Engn Sci, Inst Biomed Engn IBME, Old Rd Campus Res Bldg, Oxford OX3 7DG, England
[3] Univ Leuven, KU Leuven, Child Neurol, Leuven, Belgium
[4] Univ Leuven, KU Leuven, Dept Elect Engn ESAT, Div Stadius, Leuven, Belgium
[5] IMEC, Leuven, Belgium
基金
英国惠康基金;
关键词
EEG; preterm neonate; quiet sleep; CLASS; automated sleep detection; brain maturation; LOW-BIRTH-WEIGHT; EEG-SLEEP; NEONATAL EEG; TERM; RECORDINGS; AGE; CHILDREN; BABIES; METAANALYSIS; PROFILES;
D O I
10.1142/S012906571750023X
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Sleep state development in preterm neonates can provide crucial information regarding functional brain maturation and give insight into neurological well being. However, visual labeling of sleep stages from EEG requires expertise and is very time consuming, prompting the need for an automated procedure. We present a robust method for automated detection of preterm sleep from EEG, over a wide postmenstrual age (PMA = gestational age + postnatal age) range, focusing first on Quiet Sleep (QS) as an initial marker for sleep assessment. Our algorithm, CLuster-based Adaptive Sleep Staging (CLASS), detects QS if it remains relatively more discontinuous than non-QS over PMA. CLASS was optimized on a training set of 34 recordings aged 27-42 weeks PMA, and performance then assessed on a distinct test set of 55 recordings of the same age range. Results were compared to visual QS labeling from two independent raters (with inter-rater agreement Kappa = 0.93), using Sensitivity, Specificity, Detection Factor (DF = proportion of visual QS periods correctly detected by CLASS) and Misclassification Factor (MF = proportion of CLASS-detected QS periods that are misclassified). CLASS performance proved optimal across recordings at 31-38 weeks (median DF = 1.0, median MF 0-0.25, median Sensitivity 0.93-1.0, and median Specificity 0.80-0.91 across this age range), with minimal misclassifications at 35-36 weeks (median MF = 0). To illustrate the potential of CLASS in facilitating clinical research, normal maturational trends over PMA were derived from CLASS-estimated QS periods, visual QS estimates, and nonstate specific periods (containing QS and non-QS) in the EEG recording. CLASS QS trends agreed with those from visual QS, with both showing stronger correlations than nonstate specific trends. This highlights the benefit of automated QS detection for exploring brain maturation.
引用
收藏
页数:18
相关论文
共 52 条
[1]   Meta-Analysis of Neurobehavioral Outcomes in Very Preterm and/or Very Low Birth Weight Children [J].
Aarnoudse-Moens, Cornelieke Sandrine Hanan ;
Weisglas-Kuperus, Nynke ;
van Goudoever, Johannes Bernard ;
Oosterlaan, Jaap .
PEDIATRICS, 2009, 124 (02) :717-728
[2]   Electroencephalography in premature and full-term infants. Developmental features and glossary [J].
Andre, M. ;
Lamblin, M. -D. ;
d'Allest, A. M. ;
Curzi-Dascalova, L. ;
Moussalli-Salefranque, F. ;
Tich, S. Nguyen The ;
Vecchierini-Blineau, M. -F. ;
Wallois, F. ;
Walls-Esquivel, E. ;
Plouin, P. .
NEUROPHYSIOLOGIE CLINIQUE-CLINICAL NEUROPHYSIOLOGY, 2010, 40 (02) :59-124
[3]   Brain Injury in Premature Neonates: A Primary Cerebral Dysmaturation Disorder? [J].
Back, Stephen A. ;
Miller, Steven P. .
ANNALS OF NEUROLOGY, 2014, 75 (04) :469-486
[4]   SLEEP STATE ORGANIZATION IN PREMATURE-INFANTS OF LESS-THAN-35-WEEKS GESTATIONAL-AGE [J].
CURZIDASCALOVA, L ;
FIGUEROA, JM ;
EISELT, M ;
CHRISTOVA, E ;
VIRASSAMY, A ;
DALLEST, AM ;
GUIMARAES, H ;
GAULTIER, C ;
DEHAN, M .
PEDIATRIC RESEARCH, 1993, 34 (05) :624-628
[5]   Brain development of very preterm and very low-birthweight children in childhood and adolescence: a meta-analysis [J].
de Kieviet, Jorrit F. ;
Zoetebier, Lydia ;
Van Elburg, Ruurd M. ;
Vermeulen, R. Jeroen ;
Oosterlaan, Jaap .
DEVELOPMENTAL MEDICINE AND CHILD NEUROLOGY, 2012, 54 (04) :313-323
[6]   Automated artifact removal as preprocessing refines neonatal seizure detection [J].
De Vos, M. ;
Deburchgraeve, W. ;
Cherian, P. J. ;
Matic, V. ;
Swarte, R. M. ;
Govaert, P. ;
Visser, G. H. ;
Van Huffel, S. .
CLINICAL NEUROPHYSIOLOGY, 2011, 122 (12) :2345-2354
[7]   The suppression curve as a quantitative approach for measuring brain maturation in preterm infants [J].
Dereymaeker, A. ;
Koolen, N. ;
Jansen, K. ;
Vervisch, J. ;
Ortibus, E. ;
De Vos, M. ;
Van Huffel, S. ;
Naulaers, G. .
CLINICAL NEUROPHYSIOLOGY, 2016, 127 (08) :2760-2765
[8]   Behavior and EEG concordance of active and quiet sleep in preterm very low birth weight and full-term neonates at matched conceptional age [J].
dos Santos, Aline Avila ;
Khan, Richard Lester ;
Rocha, Gibsi ;
Nunes, Magda Lahorgue .
EARLY HUMAN DEVELOPMENT, 2014, 90 (09) :507-510
[9]  
Gerla V., 2007, INT J BIOELECTROMAGN, V9, P25
[10]   Sleep and Brain Development The Critical Role of Sleep in Fetal and Early Neonatal Brain Development [J].
Graven, Stanley N. ;
Browne, Joy V. .
NEWBORN AND INFANT NURSING REVIEWS, 2008, 8 (04) :173-179