Explicit schemes for parabolic and hyperbolic equations

被引:7
|
作者
Vabishchevich, P. N. [1 ,2 ]
机构
[1] Russian Acad Sci, Nucl Safety Inst, Moscow 115191, Russia
[2] North Eastern Fed Univ, Yakutsk 677000, Russia
基金
俄罗斯基础研究基金会;
关键词
Parabolic equation; Hyperbolic equation; Finite difference schemes; Explicit schemes; Alternating triangle method; DIFFUSION EQUATION;
D O I
10.1016/j.amc.2014.10.124
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Standard explicit schemes for parabolic equations are not very convenient for computing practice due to the fact that they have strong restrictions on a time step. More promising explicit schemes are associated with explicit-implicit splitting of the problem operator (Saul'yev asymmetric schemes, explicit alternating direction (ADE) schemes, group explicit method). These schemes belong to the class of unconditionally stable schemes, but they demonstrate bad approximation properties. These explicit schemes are treated as schemes of the alternating triangle method and can be considered as factorized schemes where the problem operator is splitted into the sum of two operators that are adjoint to each other. Here we propose a multilevel modification of the alternating triangle method, which demonstrates better properties in terms of accuracy. We also consider explicit schemes of the alternating triangle method for the numerical solution of boundary value problems for hyperbolic equations of second order. The study is based on the general theory of stability (well-posedness) for operator-difference schemes. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:424 / 431
页数:8
相关论文
共 50 条