A tight bound for conflict-free coloring in terms of distance to cluster

被引:1
|
作者
Bhyravarapu, Sriram [1 ]
Kalyanasundaram, Subrahmanyam [2 ]
机构
[1] Inst Math Sci, HBNI, Chennai, India
[2] IIT Hyderabad, Dept Comp Sci & Engn, Hyderabad, India
关键词
Conflict-free coloring; Distance to cluster; Graph coloring;
D O I
10.1016/j.disc.2022.113058
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given an undirected graph G = (V, E), a conflict-free coloring with respect to open neighborhoods (CFON coloring) is a vertex coloring such that every vertex has a uniquely colored vertex in its open neighborhood. The minimum number of colors required for such a coloring is the CFON chromatic number of G, denoted by chi(ON)(G). In previous work [WG 2020], we showed the upper bound chi(ON)(G) <= dc(G) + 3, where dc(G) denotes the distance to cluster parameter of G. In this paper, we obtain the improved upper bound of chi(ON)(G) < dc(G) + 1. We also exhibit a family of graphs for which chi(ON)(G) > dc(G), thereby demonstrating that our upper bound is tight. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Tight online conflict-free coloring of intervals
    Abam, M. A.
    SCIENTIA IRANICA, 2021, 28 (03) : 1493 - 1496
  • [2] Tight online conflict-free coloring of intervals
    Abam M.A.
    Scientia Iranica, 2021, 28 (3 D) : 1493 - 1496
  • [3] CONFLICT-FREE COLORING OF GRAPHS
    Abel, Zachary
    Alvarez, Victor
    Demaine, Erik D.
    Fekete, Sandor P.
    Gour, Aman
    Hesterberg, Adam
    Keldenich, Phillip
    Scheffer, Christian
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2018, 32 (04) : 2675 - 2702
  • [4] Extremal Results on Conflict-Free Coloring
    Bhyravarapu, Sriram
    Gupta, Shiwali
    Kalyanasundaram, Subrahmanyam
    Mathew, Rogers
    JOURNAL OF GRAPH THEORY, 2025,
  • [5] Conflict-Free Coloring of String Graphs
    Chaya Keller
    Alexandre Rok
    Shakhar Smorodinsky
    Discrete & Computational Geometry, 2021, 65 : 1337 - 1372
  • [6] Online conflict-free coloring of intervals
    Abam, M. A.
    Seraji, M. J. Rezaei
    Shadravan, M.
    SCIENTIA IRANICA, 2014, 21 (06) : 2138 - 2141
  • [7] Strong Conflict-Free Coloring for Intervals
    Cheilaris, Panagiotis
    Gargano, Luisa
    Rescigno, Adele A.
    Smorodinsky, Shakhar
    ALGORITHMS AND COMPUTATION, ISAAC 2012, 2012, 7676 : 4 - 13
  • [8] Online Conflict-Free Coloring for Intervals
    Fiat, Amos
    Levy, Meital
    Matousek, Jiri
    Mossel, Elchanan
    Pach, Janos
    Sharir, Micha
    Smorodinsky, Shakhar
    Wagner, Uli
    Welzl, Emo
    PROCEEDINGS OF THE SIXTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2005, : 545 - 554
  • [9] Conflict-free coloring of unit disks
    Lev-Tov, Nissan
    Meg, David
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (07) : 1521 - 1532
  • [10] Online conflict-free coloring for intervals
    Chen, Ke
    Fiat, Amos
    Kaplan, Haim
    Levy, Meital
    Matousek, Jiri
    Mossel, Elchanan
    Pach, Janos
    Sharir, Micha
    Smorodinsky, Shakhar
    Wagner, Uli
    Welzl, Emo
    SIAM JOURNAL ON COMPUTING, 2006, 36 (05) : 1342 - 1359