The effects of elevated CO2 and nitrogen nutrition on root dynamics

被引:31
|
作者
Cohen, Itay [1 ]
Rapaport, Tal [1 ]
Berger, Reut Tal [1 ]
Rachmilevitch, Shimon [1 ]
机构
[1] Ben Gurion Univ Negev, Blaustein Inst Desert Res, French Associates Inst Agr & Biotechnol Drylands, IL-84990 Sede Boqer, Israel
关键词
Roots; Elevated CO2; Nitrogen source; Anatomy; Xylem; Root respiration; Root orders; NITRATE ASSIMILATION; WATER-UPTAKE; PLANTS; RESPIRATION; ENRICHMENT; ACCLIMATION; CARBON; CAPACITY; GROWTH; TREES;
D O I
10.1016/j.plantsci.2018.03.034
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Ambient CO2 concentration is currently 400 mu mol mol(-1), and projections forecast an increase up to 970 mol mol(-1) by century's end. Elevated CO2 can stimulate C3 plant growth, whereas nitrogen is the main nutrient plants acquire from soils and often limits growth. Plants primarily obtain two nitrogen sources from the soil, ammonium (NH4+) and nitrate (NO3-). At elevated CO2 levels, plant growth and nitrogen metabolism is affected by the nitrogen source. Most research has focused on shoot traits, while neglecting the plants' hidden half, the root. We studied the effects of elevated CO2 and nitrogen source on hydroponically grown tomato plants, a C3 model and crop plant. Our main objective was to determine how the nitrogen source and elevated CO2 affect root development. Our results indicate they affect development in terms of the size and anatomy of different root orders. Specifically, root xylem development was found sensitive to the nitrogen source, whereas NO3--supplied plants displayed greater xylem development compared to their NH4+ counterparts, and also to a lesser extent, to elevated CO2, which we found inhibits this development. Additionally, elevated CO2 decreased root respiration in different root orders exclusively in plants supplied with NH4+ as the sole nitrogen source.
引用
收藏
页码:294 / 300
页数:7
相关论文
共 50 条
  • [1] Dynamics of root systems in native grasslands:: effects of elevated atmospheric CO2
    Arnone, JA
    Zaller, JG
    Spehn, EM
    Niklaus, PA
    Wells, CE
    Körner, C
    NEW PHYTOLOGIST, 2000, 147 (01) : 73 - 86
  • [2] Effects of elevated [CO2] and nitrogen nutrition on cytokinins in the xylem sap and leaves of cotton
    Yong, JWH
    Wong, SC
    Letham, DS
    Hocart, CH
    Farquhar, GD
    PLANT PHYSIOLOGY, 2000, 124 (02) : 767 - 779
  • [3] Nitrogen nutrition and aspects of root growth and function of two wheat cultivars under elevated [CO2]
    Tausz, Michael
    Bilela, Silvija
    Bahrami, Helale
    Armstrong, Roger
    Fitzgerald, Glenn
    O'Leary, Garry
    Simon, Judy
    Tausz-Posch, Sabine
    Rennenbereg, Heinz
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2017, 140 : 1 - 7
  • [4] Effects of elevated CO2 and nitrogen on the synchrony of shoot and root growth in ponderosa pine
    Tingey, DT
    Johnson, MG
    Phillips, DL
    Johnson, DW
    Ball, JT
    TREE PHYSIOLOGY, 1996, 16 (11-12) : 905 - 914
  • [5] Effects of elevated CO2 on fine root dynamics in a Mojave Desert community:: a FACE study
    Phillips, DL
    Johnson, MG
    Tingey, DT
    Catricala, CE
    Hoyman, TL
    Nowak, RS
    GLOBAL CHANGE BIOLOGY, 2006, 12 (01) : 61 - 73
  • [6] The effects of elevated atmospheric CO2 and nitrogen amendments on subsurface CO2 production and concentration dynamics in a maturing pine forest
    Edoardo Daly
    Sari Palmroth
    Paul Stoy
    Mario Siqueira
    A. Christopher Oishi
    Jehn-Yih Juang
    Ram Oren
    Amilcare Porporato
    Gabriel G. Katul
    Biogeochemistry, 2009, 94 : 271 - 287
  • [7] The effects of elevated atmospheric CO2 and nitrogen amendments on subsurface CO2 production and concentration dynamics in a maturing pine forest
    Daly, Edoardo
    Palmroth, Sari
    Stoy, Paul
    Siqueira, Mario
    Oishi, A. Christopher
    Juang, Jehn-Yih
    Oren, Ram
    Porporato, Amilcare
    Katul, Gabriel G.
    BIOGEOCHEMISTRY, 2009, 94 (03) : 271 - 287
  • [8] Interactive effects of elevated CO2 concentration, drought and nitrogen nutrition on malting quality of spring barley
    Simor, Jan
    Klem, Karel
    Psota, Vratislav
    MENDELNET 2019: PROCEEDINGS OF 26TH INTERNATIONAL PHD STUDENTS CONFERENCE, 2019, : 108 - 112
  • [9] Grassland species effects on soil CO2 flux track the effects of elevated CO2 and nitrogen
    Craine, JM
    Wedin, DA
    Reich, PB
    NEW PHYTOLOGIST, 2001, 150 (02) : 425 - 434
  • [10] Effects of elevated CO2, increased nitrogen deposition, and plant diversity on aboveground litter and root decomposition
    Zuo, Xiaoan
    Knops, Johannes M. H.
    ECOSPHERE, 2018, 9 (02):