A law of the iterated logarithm for the number of occupied boxes in the Bernoulli sieve

被引:5
|
作者
Iksanov, Alexander [1 ]
Jedidi, Wissem [2 ,3 ]
Bouzeffour, Fethi [4 ]
机构
[1] Taras Shevchenko Natl Univ Kyiv, Fac Comp Sci & Cybernet, UA-01601 Kiev, Ukraine
[2] King Saud Univ, Dept Stat & OR, POB 2455, Riyadh 11451, Saudi Arabia
[3] Univ Tunis El Manar, Fac Sci Tunis, Lab Analyse Math & Applicat LR11ES11, Tunis 2092, Tunisia
[4] King Saud Univ, Dept Math, Coll Sci, Riyadh 11451, Saudi Arabia
关键词
Bernoulli sieve; Infinite occupancy; Law of iterated logarithm; Perturbed random walk; Renewal theory;
D O I
10.1016/j.spl.2017.03.017
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Bernoulli sieve is an infinite occupancy scheme obtained by allocating the points of a uniform [0, 1] sample over an infinite collection of intervals made up by successive positions of a multiplicative random walk independent of the uniform sample. We prove a law of the iterated logarithm for the number of non-empty (occupied) intervals as the size of the uniform sample becomes large. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:244 / 252
页数:9
相关论文
共 50 条