Ribbon categories and (unoriented) CFT: Frobenius algebras, automorphisms, reversions

被引:0
|
作者
Fuchs, Juergen [1 ]
Runkel, Ingo [2 ]
Schweigert, Christoph [3 ]
机构
[1] Karlstads Univ, Inst Fys, Univ 5, S-65188 Karlstad, Sweden
[2] Kings Coll London, Dept Math, London WC2R 2LS, England
[3] Univ Hamburg, Fachbereich Math, D-20146 Hamburg, Germany
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Morita class of symmetric special Frobenius algebras A in the modular tensor category of a chiral CFT determines a full CFT on oriented world sheets. For unoriented world sheets, A must in addition possess a reversion, i.e. an isomorphism from A(opp) to A squaring to the twist. Any two reversions of an algebra A differ by an element of the group Aut(A) of algebra automorphisms of A. We establish a group homomorphism from Aut(A) to the Picard group of the bimodule category C-A vertical bar A, with kernel consisting of the inner automorphisms, and we refine Morita equivalence to an equivalence relation between algebras with reversion.
引用
收藏
页码:203 / +
页数:3
相关论文
共 38 条