Noninvasive Subsurface Electrical Probe for Encapsulated Layers in van der Waals Heterostructures

被引:7
|
作者
Pandey, Mrityunjay [1 ]
Soni, Radhika [2 ]
Mathur, Avi [2 ]
Singh, Akash [3 ]
Singh, Abhishek Kumar [3 ]
Raghavan, Srinivasan [1 ]
Chandni, U. [2 ]
机构
[1] Indian Inst Sci, Ctr Nano Sci & Engn, Bangalore 560012, Karnataka, India
[2] Indian Inst Sci, Dept Instrumentat & Appl Phys, Bangalore 560012, Karnataka, India
[3] Indian Inst Sci, Mat Res Ctr, Bangalore 560012, Karnataka, India
关键词
GRAPHENE;
D O I
10.1103/PhysRevApplied.12.064032
中图分类号
O59 [应用物理学];
学科分类号
摘要
Van der Waals heterostructures formed by stacking different atomically thin layered materials have emerged as the sought-after device platform for electronic and optoelectronic applications. Determination of the spatial extent of all the encapsulated components in such vertical stacks is key to optimal fabrication methods and improved device performance. Here, we employ electrostatic force microscopy as a fast and noninvasive microscopic probe that provides compelling images of two-dimensional layers buried over 30 nm below the sample surface. We demonstrate the versatility of the technique by studying hetero-junctions comprising graphene, hexagonal boron nitride, and transition-metal dichalcogenides. The work function of each constituent layer acts as a unique fingerprint during imaging, thereby providing important insights into the charge environment, disorder, structural imperfections, and doping profile. The technique holds great potential for gaining a comprehensive understanding of the quality and flatness as well as local electrical properties of buried layers in a large class of nanoscale materials and vertical heterostructures.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Encapsulated Void Resonators in Van der Waals Heterostructures
    Sarbajna, Avishek
    Danielsen, Dorte Rubaek
    Casses, Laura Nevenka
    Stenger, Nicolas
    Boggild, Peter
    Raza, Soren
    LASER & PHOTONICS REVIEWS, 2025, 19 (03)
  • [2] Slidable atomic layers in van der Waals heterostructures
    Kobayashi, Yu
    Taniguchi, Takashi
    Watanabe, Kenji
    Maniwa, Yutaka
    Miyata, Yasumitsu
    APPLIED PHYSICS EXPRESS, 2017, 10 (04)
  • [3] Van der Waals heterostructures
    Barnes, Natalie
    NATURE REVIEWS METHODS PRIMERS, 2022, 2 (01):
  • [4] Van der Waals heterostructures
    Geim, A. K.
    Grigorieva, I. V.
    NATURE, 2013, 499 (7459) : 419 - 425
  • [5] Van der Waals heterostructures
    Nature Reviews Methods Primers, 2
  • [6] Van der Waals heterostructures
    A. K. Geim
    I. V. Grigorieva
    Nature, 2013, 499 : 419 - 425
  • [7] Vertical electron transport in van der Waals heterostructures with graphene layers
    Ryzhii, V.
    Otsuji, T.
    Ryzhii, M.
    Aleshkin, V. Ya.
    Dubinov, A. A.
    Mitin, V.
    Shur, M. S.
    JOURNAL OF APPLIED PHYSICS, 2015, 117 (15)
  • [8] Van der Waals heterostructures and devices
    Yuan Liu
    Nathan O. Weiss
    Xidong Duan
    Hung-Chieh Cheng
    Yu Huang
    Xiangfeng Duan
    Nature Reviews Materials, 1
  • [9] Photovoltaics in Van der Waals Heterostructures
    Furchi, Marco M.
    Zechmeister, Armin A.
    Hoeller, Florian
    Wachter, Stefan
    Pospischil, Andreas
    Mueller, Thomas
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2017, 23 (01) : 106 - 116
  • [10] Frustrated van der Waals heterostructures
    Tawfik, Sherif Abdulkader
    NANOSCALE, 2024, 16 (44) : 20484 - 20488