Finite rank perturbations of normal operators: Spectral subspaces and Borel series

被引:6
|
作者
Gallardo-Gutierrez, Eva A. [1 ,2 ]
Gonzalez-Dona, F. Javier [1 ,2 ]
机构
[1] Inst Ciencias Matemat ICMAT, CSIC UAM UC3M UCM, Plazade Ciencias 3, Madrid 28040, Spain
[2] Univ Complutense Madrid, Fac Ciencias Matemat, Dept Anal Matemat & Matemat Aplicada, Madrid 28040, Spain
关键词
Rank-one perturbation of normal; operators; Rank-one perturbation of diagonal; Spectral subspaces; Borel series; Wolff-Denjoy series; COMPACT PERTURBATIONS; HYPERINVARIANT SUBSPACES; DECOMPOSABILITY;
D O I
10.1016/j.matpur.2022.04.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We characterize the spectral subspaces associated to closed sets of rank-one perturbations of diagonal operators and, in general, of diagonalizable normal operators of multiplicity one acting boundedly on a separable, infinite dimensional complex Hilbert space by means of functional equations involving Borel series. As a particular instance, if T = D? +u 0 v is a rank-one perturbation of a diagonalizable normal operator D? with respect to a basis E = (en)n>1 and the vectors u and v have Fourier coefficients (alpha n)n>1 and (beta n)n>1 with respect to E, respectively, it is shown that T has non-trivial closed invariant subspaces provided that either (alpha n)n>1 is an element of 1 pound or (beta n)n>1 is an element of 1 pound. Likewise, analogous results hold for finite rank perturbations of D?. Moreover, such operators T have non-trivial closed hyperinvariant subspaces whenever they are not a scalar multiple of the identity extending previous theorems of Foias, Jung, Ko and Pearcy [8] and of Fang and J. Xia [6] on an open question of at least forty years.
引用
收藏
页码:23 / 75
页数:53
相关论文
共 50 条
  • [1] SPECTRAL DISSECTION OF FINITE RANK PERTURBATIONS OF NORMAL OPERATORS
    Putinar, Mihai
    Yakubovich, Dmitry
    JOURNAL OF OPERATOR THEORY, 2021, 85 (01) : 45 - 78
  • [2] Finite rank perturbations of normal operators: Spectral idempotents and decomposability
    Gallardo-Gutierrez, Eva A.
    Gonzalez-Dona, F. Javier
    JOURNAL OF FUNCTIONAL ANALYSIS, 2023, 285 (12)
  • [3] Finite-Rank Perturbations of Normal Operators: Hyperinvariant Subspaces and a Problem of Pearcy
    Gallardo-Gutierrez, Eva A.
    Gonzalez-Dona, F. Javier
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2024, 73 (04) : 1551 - 1578
  • [4] Reducing subspaces for rank-one perturbations of normal operators
    Gallardo-Gutierrez, Eva A.
    Javier Gonzalez-Dona, F.
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2023, 153 (04) : 1391 - 1423
  • [5] HYPONORMALITY OF FINITE RANK PERTURBATIONS OF NORMAL OPERATORS
    Jung, Il Bong
    Lee, Eun Young
    Seo, Minjung
    OPERATORS AND MATRICES, 2018, 12 (03): : 779 - 785
  • [6] Invariant subspaces for certain finite-rank perturbations of diagonal operators
    Fang, Quanlei
    Xia, Jingbo
    JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (05) : 1356 - 1377
  • [7] SPECTRAL THEORY OF RANK ONE PERTURBATIONS OF NORMAL COMPACT OPERATORS
    Baranov, A. D.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2019, 30 (05) : 761 - 802
  • [8] Spectral decomposability of rank-one perturbations of normal operators
    Foias, C.
    Jung, I. B.
    Ko, E.
    Pearcy, C.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 375 (02) : 602 - 609
  • [9] On finite rank perturbations of definitizable operators
    Azizov, Tomas Ya.
    Behmdt, Jussi
    Trunk, Carsten
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 339 (02) : 1161 - 1168
  • [10] Finite Rank Perturbations of Toeplitz Operators
    Željko Čučković
    Integral Equations and Operator Theory, 2007, 59 : 345 - 353