Stability thresholds and calculation techniques for fast entangling gates on trapped ions

被引:9
|
作者
Bentley, C. D. B. [1 ]
Taylor, R. L. [1 ]
Carvalho, A. R. R. [1 ,2 ]
Hope, J. J. [1 ]
机构
[1] Australian Natl Univ, Res Sch Phys & Engn, Dept Quantum Sci, Canberra, ACT 2601, Australia
[2] Australian Natl Univ, Res Sch Phys & Engn, Ctr Quantum Computat & Commun Technol, Dept Quantum Sci, Canberra, ACT 2601, Australia
基金
澳大利亚研究理事会;
关键词
QUANTUM COMPUTATION; LASER-PULSES; IMPLEMENTATION;
D O I
10.1103/PhysRevA.93.042342
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Fast entangling gates have been proposed for trapped ions that are orders of magnitude faster than current implementations. We present here a detailed analysis of the challenges involved in performing a successful fast gate. We show that the rotating wave approximation is stable with respect to pulse numbers: the time scale on which we can neglect terms rotating at the atomic frequency is negligibly affected by the number of pulses in the fast gate. In contrast, we show that the laser pulse instability does give rise to a pulse-number-dependent effect; the fast gate infidelity is compounded with the number of applied imperfect pulses. Using the dimensional reduction method presented here, we find bounds on the pulse stability required to achieve two-qubit gate fidelity thresholds.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Resilient Entangling Gates for Trapped Ions
    Webb, A. E.
    Webster, S. C.
    Collingbourne, S.
    Bretaud, D.
    Lawrence, A. M.
    Weidt, S.
    Mintert, F.
    Hensinger, W. K.
    PHYSICAL REVIEW LETTERS, 2018, 121 (18)
  • [2] Fast phase gates with trapped ions
    Palmero, M.
    Martinez-Garaot, S.
    Leibfried, D.
    Wineland, D. J.
    Muga, J. G.
    PHYSICAL REVIEW A, 2017, 95 (02)
  • [3] Fast multi-qubit global-entangling gates without individual addressing of trapped ions
    Wang, Kaizhao
    Yu, Jing-Fan
    Wang, Pengfei
    Luan, Chunyang
    Zhang, Jing-Ning
    Kim, Kihwan
    QUANTUM SCIENCE AND TECHNOLOGY, 2022, 7 (04):
  • [4] Fast quantum gates for cold trapped ions
    Jonathan, D
    Plenio, MB
    Knight, PL
    PHYSICAL REVIEW A, 2000, 62 (04): : 10
  • [5] Optimized fast gates for quantum computing with trapped ions
    Gale, Evan P. G.
    Mehdi, Zain
    Oberg, Lachlan M.
    Ratcliffe, Alexander K.
    Haine, Simon A.
    Hope, Joseph J.
    PHYSICAL REVIEW A, 2020, 101 (05)
  • [6] Two-qubit entangling gates within arbitrarily long chains of trapped ions
    Landsman, K. A.
    Wu, Y.
    Leung, P. H.
    Zhu, D.
    Linke, N. M.
    Brown, K. R.
    Duan, L.
    Monroe, C.
    PHYSICAL REVIEW A, 2019, 100 (02)
  • [7] Micromotion-enhanced fast entangling gates for trapped-ion quantum computing
    Ratcliffe, Alexander K.
    Oberg, Lachlan M.
    Hope, Joseph J.
    PHYSICAL REVIEW A, 2020, 101 (05)
  • [8] Entangling gate with trapped ions using long
    Weidt, S.
    Randall, J.
    Webster, S. C.
    Lake, K.
    Webb, A. E.
    Cohen, I.
    Navickas, T.
    Lekitsch, B.
    Retzker, A.
    Hensinger, W. K.
    2016 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2016,
  • [9] Fast entangling gates in long ion chains
    Mehdi, Zain
    Ratcliffe, Alexander K.
    Hope, Joseph J.
    PHYSICAL REVIEW RESEARCH, 2021, 3 (01):
  • [10] Trapped Rydberg ions:: from spin chains to fast quantum gates
    Mueller, Markus
    Liang, Linmei
    Lesanovsky, Igor
    Zoller, Peter
    NEW JOURNAL OF PHYSICS, 2008, 10