Paraconsistent and Paracomplete Logics Based on k-Cyclic Modal Pseudocomplemented De Morgan Algebras

被引:3
|
作者
Figallo-Orellano, Aldo [1 ,2 ]
Perez-Gaspar, Miguel [3 ]
Manuel Ramirez-Contreras, Juan [4 ]
机构
[1] Univ Nacl Sur UNS, Dept Matemat, Bahia Blanca, Buenos Aires, Argentina
[2] Univ Estadual Campinas, UNICAMP, Ctr Log Epistemol & Hist Ciencia, Campinas, Brazil
[3] Univ Nacl Autonoma Mexico, Fac Ingn, Ciudad De Mexico, Mexico
[4] Univ Amer Puebla UDLAP, Dept Actuaria Fis & Matemat, Puebla, Mexico
基金
巴西圣保罗研究基金会;
关键词
Tetravelent modal algebras; Pseudocomplemented De Morgan algebras; Degree-preserving logic; Paraconsistent logic; TRUTH;
D O I
10.1007/s11225-022-10004-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The study of the theory of operators over modal pseudocomplemented De Morgan algebras was begun in papers [20] and [21]. In this paper, we introduce and study the class of modal pseudocomplemented De Morgan algebras enriched by a k-periodic automorphism (or C-k-algebras). We denote by inverted left perpendicular(k) the automorphism where k is a positive integer. For k=2, the class coincides with the one studied in [20] where the automorphism works as a new unary operator which can be considered as a negation. In the first place, we develop an algebraic study of the class of C-k-algebras; as consequence, we prove the class C-k-algebras is a semisimple variety and determine the generating algebras. After doing the algebraic study and using these properties, we built two families of sentential logics that we denote with L-k(<=) and L-k for every k. L-k is a 1-assertional logic and L-k(<=) is the degree-preserving logic both associated with the class of C-k-algebras. Working over these logics, we prove that L-k(<=) is paraconsistent with respect to the de Morgan negation similar to, which is protoalgebraic and finitely equivalential but not algebraizable. In contrast, we prove that L-k is algebraizable, sharing the same theorems with L-k(<=) , but not paraconsistent with respect to similar to. Furthermore, we show that L-k(<=) and L-k are paracomplete logics with respect to similar to and inverted left perpendicular(k) and paraconsistent logics with respecto to inverted left perpendicular(k), for every k.
引用
收藏
页码:1291 / 1325
页数:35
相关论文
共 22 条
  • [1] Paraconsistent and Paracomplete Logics Based on k-Cyclic Modal Pseudocomplemented De Morgan Algebras
    Aldo Figallo-Orellano
    Miguel Peréz-Gaspar
    Juan Manuel Ramírez-Contreras
    Studia Logica, 2022, 110 : 1291 - 1325
  • [2] A note on k-cyclic modal pseudocomplemented De Morgan algebras
    Figallo-Orellano, Aldo
    Slagter, Juan Sebastian
    SOFT COMPUTING, 2023, 27 (11) : 6961 - 6972
  • [3] A note on k-cyclic modal pseudocomplemented De Morgan algebras
    Aldo Figallo-Orellano
    Juan Sebastián Slagter
    Soft Computing, 2023, 27 : 6961 - 6972
  • [4] On Monadic Operators on Modal Pseudocomplemented De Morgan Algebras and Tetravalent Modal Algebras
    Figallo Orellano, Aldo
    Pascual, Ines
    STUDIA LOGICA, 2019, 107 (04) : 591 - 611
  • [5] Symmetric operators on modal pseudocomplemented De Morgan algebras
    Figallo-Orellano, Aldo
    Ziliani, Alicia
    Figallo, Martin
    LOGIC JOURNAL OF THE IGPL, 2017, 25 (04) : 496 - 511
  • [6] On Monadic Operators on Modal Pseudocomplemented De Morgan Algebras and Tetravalent Modal Algebras
    Aldo Figallo Orellano
    Inés Pascual
    Studia Logica, 2019, 107 : 591 - 611
  • [7] A topological duality for tense modal pseudocomplemented De Morgan algebras
    Pelaitay, Gustavo
    Starobinsky, Maia
    MATHEMATICA SLOVACA, 2024, 74 (03) : 543 - 562
  • [8] Congruence properties of pseudocomplemented De Morgan algebras
    Sankappanavar, Hanamantagouda P.
    de Carvalho, Julia Vaz
    MATHEMATICAL LOGIC QUARTERLY, 2014, 60 (06) : 425 - 436
  • [9] Varieties of Regular Pseudocomplemented de Morgan Algebras
    M. E. Adams
    H. P. Sankappanavar
    Júlia Vaz de Carvalho
    Order, 2020, 37 : 529 - 557
  • [10] Varieties of Regular Pseudocomplemented de Morgan Algebras
    Adams, M. E.
    Sankappanavar, H. P.
    de Carvalho, Julia Vaz
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2020, 37 (03): : 529 - 557