1-Gap Planarity of Complete Bipartite Graphs

被引:0
|
作者
Bachmaier, Christian [1 ]
Rutter, Ignaz [1 ]
Stumpf, Peter [1 ]
机构
[1] Univ Passau, Fac Comp Sci & Math, Passau, Germany
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A graph is 1-gap planar if it admits a drawing such that each crossing can be assigned to one of the two involved edges in such a way that each edge is assigned at most one crossing. We show that K-3,K-14,K- K-4,K-10 and K-6,K-6 are not 1-gap planar.
引用
收藏
页码:646 / 648
页数:3
相关论文
共 50 条
  • [1] A planarity criterion for cubic bipartite graphs
    Bohme, T
    Harant, J
    Pruchnewski, A
    Schiermeyer, I
    DISCRETE MATHEMATICS, 1998, 191 (1-3) : 31 - 43
  • [2] BIPARTITE GRAPHS, UPWARD DRAWINGS, AND PLANARITY
    DIBATTISTA, G
    LIU, WP
    RIVAL, I
    INFORMATION PROCESSING LETTERS, 1990, 36 (06) : 317 - 322
  • [3] 1-planarity of complete multipartite graphs
    Czap, Julius
    Hudak, David
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (4-5) : 505 - 512
  • [4] PLANARITY AND GENUS OF SPARSE RANDOM BIPARTITE GRAPHS
    Do T.A.
    Erde J.
    Kang M.
    SIAM Journal on Discrete Mathematics, 2022, 36 (02) : 1394 - 1415
  • [5] Complete bipartite factorisations by complete bipartite graphs
    Martin, N
    DISCRETE MATHEMATICS, 1997, 167 : 461 - 480
  • [6] Complete bipartite factorisations by complete bipartite graphs
    Martin, N.
    Discrete Mathematics, 1997, 167-168 : 461 - 480
  • [7] GraPacking Bipartite Graphs with Covers of Complete Bipartite Graphs
    Chalopin, Jeremie
    Paulusma, Daniel
    ALGORITHMS AND COMPLEXITY, PROCEEDINGS, 2010, 6078 : 276 - +
  • [8] Packing bipartite graphs with covers of complete bipartite graphs
    Chalopin, Jeremie
    Paulusma, Daniel
    DISCRETE APPLIED MATHEMATICS, 2014, 168 : 40 - 50
  • [9] On the decomposition of graphs into complete bipartite graphs
    Dong, Jinquan
    Liu, Yanpei
    GRAPHS AND COMBINATORICS, 2007, 23 (03) : 255 - 262
  • [10] On the Decomposition of Graphs into Complete Bipartite Graphs
    Jinquan Dong
    Yanpei Liu
    Graphs and Combinatorics, 2007, 23 : 255 - 262