Wiener's problem for positive definite functions

被引:5
|
作者
Gorbachev, D. V. [1 ]
Tikhonov, S. Yu. [2 ,3 ,4 ]
机构
[1] Tula State Univ, Dept Appl Math & Comp Sci, Tula 300012, Russia
[2] Ctr Recerca Matemat, Campus Bellaterra,Edifici C, Barcelona 08193, Spain
[3] ICREA, Pg Lluis Co 23, Barcelona 08010, Spain
[4] Univ Autonoma Barcelona, E-08193 Barcelona, Spain
关键词
Positive definite function; Wiener's problem; Hlawka's inequality; Sharp constant; Linear programming bound problem; SPHERE PACKING PROBLEM; PERIODIC-FUNCTIONS; EXTREMAL PROBLEM; TURAN; FAILURE; SERIES; BOUNDS;
D O I
10.1007/s00209-017-1978-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the sharp constant in Wiener's inequality for positive definite functions Tn | f | 2 dx = Wn( D)| D|- 1 D | f | 2 dx, D. Tn Wiener proved that , . Hlawka showed that , where D is an origin-symmetric convex body. We sharpen Hlawka's estimates for D being the ball and the cube . In particular, we prove that . We also obtain a lower bound of . Moreover, for a cube with we obtain that . Our proofs are based on the interrelation between Wiener's problem and the problems of Turan and Delsarte.
引用
收藏
页码:859 / 874
页数:16
相关论文
共 50 条