A WARPED PRODUCT VERSION OF THE CHEEGER-GROMOLL SPLITTING THEOREM

被引:28
|
作者
Wylie, William [1 ]
机构
[1] Syracuse Univ, Dept Math, 215 Carnegie Bldg, Syracuse, NY 13244 USA
关键词
DISPLACEMENT CONVEXITY; CURVATURE;
D O I
10.1090/tran/7003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a new generalization of the Cheeger-Gromoll splitting theorem where we obtain a warped product splitting under the existence of a line. The curvature condition in our splitting is a curvature dimension inequality of the form CD(0, 1). Even though we have to allow warping in our splitting, we are able to recover topological applications. In particular, for a smooth compact Riemannian manifold admitting a density which is CD(0, 1), we show that the fundamental group of M is the fundamental group of a compact manifold with non-negative sectional curvature. If the space is also locally homogeneous, we obtain that the space also admits a metric of non-negative sectional curvature. Both of these obstructions give many examples of Riemannian metrics which do not admit any smooth density which is CD(0, 1).
引用
收藏
页码:6661 / 6681
页数:21
相关论文
共 50 条
  • [1] Cheeger-Gromoll splitting theorem for groups
    Nguyen, Thang
    Wang, Shi
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2022, 22 (07): : 3377 - 3399
  • [2] A GENERALIZATION OF THE CHEEGER-GROMOLL SPLITTING THEOREM
    GALLOWAY, GJ
    ARCHIV DER MATHEMATIK, 1986, 47 (04) : 372 - 375
  • [4] Lorentzian version of the cheeger-gromoll splitting theorem and its application to general relativity
    Galloway, Gregory J.
    Proceedings of Symposia in Pure Mathematics, 1993, 54 (02):
  • [5] Cheeger-Gromoll splitting theorem for the Bakry-Emery Ricci tensor
    Tang, Junhan
    Wu, Jia-Yong
    ARCHIV DER MATHEMATIK, 2021, 117 (06) : 697 - 708
  • [6] Geodesics of the Cheeger-Gromoll Metric
    Salimov, A. A.
    Kazimova, S.
    TURKISH JOURNAL OF MATHEMATICS, 2009, 33 (01) : 99 - 105
  • [7] TWO GENERALIZATIONS OF CHEEGER-GROMOLL SPLITTING THEOREM VIA BAKRY-EMERY RICCI CURVATURE
    Fang, Fuquan
    Li, Xiang-Dong
    Zhang, Zhenlei
    ANNALES DE L INSTITUT FOURIER, 2009, 59 (02) : 563 - 573
  • [8] A note on a paraholomorphic Cheeger-Gromoll metric
    A. A. Salimov
    K. Akbulut
    Proceedings - Mathematical Sciences, 2009, 119 : 187 - 195
  • [9] A note on a paraholomorphic Cheeger-Gromoll metric
    Salimov, A. A.
    Akbulut, K.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2009, 119 (02): : 187 - 195
  • [10] ON GENERALIZED CHEEGER-GROMOLL METRIC AND HARMONICITY
    Ben Otmane, R. Kada
    Zagane, A.
    Djaa, M.
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2020, 69 (01): : 629 - 645