Obtuse constants of Alexandrov spaces

被引:1
|
作者
Mitsuishi, Ayato [1 ]
Yamaguchi, Takao [2 ]
机构
[1] Fukuoka Univ, Dept Appl Math, Jyonan Ku, Fukuoka, Fukuoka 8140180, Japan
[2] Kyoto Univ, Dept Math, Kyoto 6068502, Japan
关键词
obtuse constant; normalized volume; Alexandrov space; ideal boundary; FINITENESS THEOREMS;
D O I
10.2969/jmsj/78917891
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a new geometric invariant called the obtuse constant of spaces with curvature bounded below. We first find relations between this invariant and the normalized volume. We also discuss the case of maximal obtuse constant equal to pi/2, where we prove some rigidity for spaces. Although we consider Alexandrov spaces with curvature bounded below, the results are new even in the Riemannian case.
引用
收藏
页码:1081 / 1103
页数:23
相关论文
共 50 条