ERROR ESTIMATES OF MORLEY TRIANGULAR ELEMENT SATISFYING THE MAXIMAL ANGLE CONDITION

被引:0
|
作者
Mao, Shipeng [1 ]
Nicaise, Serge [2 ]
Shi, Zhong-Ci [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, LSEC, Beijing 100190, Peoples R China
[2] Univ Valenciennes & Hainaut Cambresis, LAMAV, ISTV, F-59313 Valenciennes 9, France
关键词
Morley element; plate elements; plate bending problems; maximal angle condition; PLATE-BENDING PROBLEMS; ANISOTROPIC MESHES; FINITE-ELEMENTS; ELLIPTIC PROBLEMS; INTERPOLATION; DOMAINS; CONVERGENCE; EQUATIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish the convergence of a nonconforming triangular Morley element for the plate bending problem on degenerate meshes. An explicit bound for the interpolation error is derived for arbitrary triangular meshes without any assumptions. The optimal convergence rates of the moment error and rotation error are derived for triangular meshes satisfying the maximal angle condition. Our results can also be extended to the three dimensional Morley element presented recently in [41]. Finally, some numerical results are reported that confirm our theoretical results.
引用
收藏
页码:639 / 655
页数:17
相关论文
共 50 条