Ex vivo gene therapy to produce bone using different cell types

被引:0
|
作者
Musgrave, DS
Bosch, P
Lee, JY
Pelinkovic, D
Ghivizzani, SC
Whalen, J
Niyibizi, C
Huard, J
机构
[1] Univ Pittsburgh, Dept Orthopaed Surg, Pittsburgh, PA USA
[2] Univ Pittsburgh, Med Ctr, Dept Mol Genet & Biochem, Pittsburgh, PA USA
关键词
D O I
暂无
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
Gene therapy and tissue engineering promise to revolutionize orthopaedic surgery. This study comprehensively compares five different cell types in ex vivo gene therapy to produce bone. The cell types include a bone marrow stromal cell line, primary muscle derived cells, primary bone marrow stromal cells, primary articular chondrocytes, and primary fibroblasts. After transduction by an adenovirus encoding for bone morphogenetic protein-2, all of the cell types were capable of secreting bone morphogenetic protein-2, However, the bone marrow stromal cell line and muscle derived cells showed more responsiveness to recombinant human hone morphogenetic protein-2 than did the other cell types. In vivo injection of each of the cell populations transduced to secrete bone morphogenetic protein-2 resulted in bone formation. Radiographic and histologic analyses corroborated the in vitro data regarding bone morphogenetic protein-2 secretion and cellular osteocompetence, This study showed the feasibility of using primary bone marrow stromal cells, primary muscle derived cells, primary articular chondrocytes, primary fibroblasts, and an osteogenesis imperfecta stromal cell line in es vivo gene therapy to produce bone. The study also show ed the advantages and disadvantages inherent in using each cell type.
引用
收藏
页码:290 / 305
页数:16
相关论文
共 50 条
  • [1] The role of cell type in bone healing mediated by ex vivo gene therapy
    Rose, T
    Peng, HR
    Shen, HC
    Usas, A
    Kuroda, R
    Lill, H
    Fu, FH
    Huard, J
    LANGENBECKS ARCHIVES OF SURGERY, 2003, 388 (05) : 347 - 355
  • [2] The role of cell type in bone healing mediated by ex vivo gene therapy
    Tim Rose
    Hairong Peng
    Hsain-Chung Shen
    Arvydas Usas
    Ryosuke Kuroda
    Helmut Lill
    Freddie H. Fu
    Johnny Huard
    Langenbeck's Archives of Surgery, 2003, 388 : 347 - 355
  • [3] In vivo effects of cell seeding technique in an ex vivo regional gene therapy model for bone regeneration
    Bell, Jennifer A.
    Mayfield, Cory K.
    Collon, Kevin
    Chang, Stephanie
    Gallo, Matthew C.
    Lechtholz-Zey, Elizabeth
    Ayad, Mina
    Sugiyam, Osamu
    Tang, Amy H.
    Park, Sang-Hyun
    Lieberman, Jay R.
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2024, 112 (10) : 1688 - 1698
  • [4] Bone morphogenetic protein 7 ex vivo gene therapy
    Rutherford, RB
    Nussenbaum, B
    Krebsbach, PH
    DRUG NEWS & PERSPECTIVES, 2003, 16 (01) : 5 - 10
  • [5] Ex vivo cell-mediated gene therapy for metachromatic leukodystrophy using neurospheres
    Kawabata, Ken
    Migita, Makoto
    Mochizuki, Hideki
    Miyake, Koichi
    Igarashi, Tsutomu
    Fukunaga, Yoshitaka
    Shimada, Takashi
    BRAIN RESEARCH, 2006, 1094 : 13 - 23
  • [6] Ex Vivo and In Vivo Hematopoietic Stem Cell Gene Therapy of Hemophilia A in Mice
    Wang, Hongjie
    Gil, Sucheol
    Doering, Christopher
    Lieber, Andre
    MOLECULAR THERAPY, 2019, 27 (04) : 327 - 327
  • [7] Ex vivo gene transfer for gene therapy
    Gunzburg, WH
    GENE DELIVERY SYSTEMS: A STATE-OF-THE-ART REVIEW, 1996, : 53 - 57
  • [8] Ex vivo gene therapy in France
    Morinet, F.
    Larghero, J.
    CURRENT RESEARCH IN TRANSLATIONAL MEDICINE, 2016, 64 (03) : 121 - 121
  • [9] Ex Vivo Gene Therapy and Vision
    Gregory-Evans, Kevin
    Bashar, A. M. A. Emran
    Tan, Malcolm
    CURRENT GENE THERAPY, 2012, 12 (02) : 103 - 115
  • [10] GENE THERAPY FOR RDEB (EX VIVO VS IN VIVO)
    Marinkovich, M. Peter
    ACTA DERMATO-VENEREOLOGICA, 2020, 100 : 13 - 13