EXACT ASYMPTOTIC FORMULAS FOR THE HEAT KERNELS OF SPACE AND TIME-FRACTIONAL EQUATIONS

被引:2
|
作者
Deng, Chang-Song [1 ]
Schilling, Rene L. [2 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Hubei, Peoples R China
[2] Tech Univ Dresden, Fak Math, Inst Math Stochast, D-01062 Dresden, Germany
基金
中国国家自然科学基金;
关键词
heat kernel; asymptotic formula; space-fractional equation; time-fractional equation; subordinator; inverse subordinator; ANOMALOUS DIFFUSION; BROWNIAN-MOTION; RANDOM-WALKS;
D O I
10.1515/fca-2019-0052
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper aims to study the asymptotic behaviour of the fundamental solutions (heat kernels) of non-local (partial and pseudo differential) equations with fractional operators in time and space. In particular, we obtain exact asymptotic formulas for the heat kernels of time-changed Brownian motions and Cauchy processes. As an application, we obtain exact asymptotic formulas for the fundamental solutions to the n-dimensional fractional heat equations in both time and space partial derivative(beta)/partial derivative t(beta) u(t, x) = -(-Delta(x))(gamma)u(t, x), beta, gamma is an element of(0, 1).
引用
收藏
页码:968 / 989
页数:22
相关论文
共 50 条
  • [1] Exact Asymptotic Formulas for the Heat Kernels of Space and Time-Fractional Equations
    Chang-Song Deng
    René L. Schilling
    Fractional Calculus and Applied Analysis, 2019, 22 : 968 - 989
  • [2] Exact solutions to the time-fractional differential equations via local fractional derivatives
    Guner, Ozkan
    Bekir, Ahmet
    WAVES IN RANDOM AND COMPLEX MEDIA, 2018, 28 (01) : 139 - 149
  • [3] On the invariant solutions of space/time-fractional diffusion equations
    Bahrami, F.
    Najafi, R.
    Hashemi, M. S.
    INDIAN JOURNAL OF PHYSICS, 2017, 91 (12) : 1571 - 1579
  • [4] On the invariant solutions of space/time-fractional diffusion equations
    Fariba Bahrami
    Ramin Najafi
    Mir Sajjad Hashemi
    Indian Journal of Physics, 2017, 91 : 1571 - 1579
  • [5] Time-fractional heat equations and negative absolute temperatures
    Zhang, Wei
    Cai, Xing
    Holm, Sverre
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 67 (01) : 164 - 171
  • [6] EXACT SOLUTIONS OF TIME-FRACTIONAL HEAT CONDUCTION EQUATION BY THE FRACTIONAL COMPLEX TRANSFORM
    Li, Zheng-Biao
    Zhu, Wei-Hong
    He, Ji-Huan
    THERMAL SCIENCE, 2012, 16 (02): : 335 - 338
  • [7] Analytic Study on Time-Fractional Schrodinger Equations: Exact Solutions by GDTM
    Odibat, Zaid
    Momani, Shaher
    Alawneh, Ahmed
    ISND 2007: PROCEEDINGS OF THE 2007 INTERNATIONAL SYMPOSIUM ON NONLINEAR DYNAMICS, PTS 1-4, 2008, 96
  • [8] Analytical Approach to Space- and Time-Fractional Burgers Equations
    Yildirim, Ahmet
    Mohyud-Din, Syed Tauseef
    CHINESE PHYSICS LETTERS, 2010, 27 (09)
  • [9] Exact solutions of generalized nonlinear time-fractional reaction–diffusion equations with time delay
    P. Prakash
    Sangita Choudhary
    Varsha Daftardar-Gejji
    The European Physical Journal Plus, 135
  • [10] The approximate and exact solutions of the space- and time-fractional Burgers equations with initial conditions by variational iteration method
    Inc, Mustafa
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (01) : 476 - 484