Optimizing Acidogenic Process for Achieving High Biomethane Yield from Anaerobic Co-Digestion of Food Waste and Rice Straw Using Response Surface Methodology

被引:8
|
作者
Chen, Xue [1 ]
Pang, Yunzhi [1 ]
Zou, Dexun [1 ]
Yuan, Hairong [1 ]
Liu, Yanping [1 ]
Zhu, Baoning [1 ]
Li, Xiujin [1 ]
机构
[1] Beijing Univ Chem Technol, Dept Environm Sci & Engn, Beijing 100029, Peoples R China
关键词
Food Waste; Rice Straw; Two-Phase Anaerobic Digestion; Response Surface Methodology; ACTIVATED-SLUDGE; SUBSTRATE RATIO; RETENTION TIME; KITCHEN WASTE; HYDROLYSIS; OPTIMIZATION; TEMPERATURE; INOCULUM; WASTEWATERS; SOLIDS;
D O I
10.1166/jbmb.2014.1461
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Response surface methodology was used to optimize the acidogenic phase parameters for co-digestion of food waste (FW) and rice straw (RS) to obtain high biomethane yield in the methanogenic phase. The organic loading rate (OLR), hydraulic retention time (HRT), feedstock to microorganism ratio (F/M-(VS/VS)) and food waste to rice straw ratio (FW/RS(VS/VS)) were investigated. The maximum volatile fatty acid (VFA) yield in the acidogenic phase was 16,844 mg/L, which was obtained at an OLR of 42.95 g volatile solid (VS)/L, HRT of 7.95 days, F/M-(VS/VS) of 2.12:1, and FW/RS(VS/VS) of 3.88:1. The VFA concentration under optimal conditions was 30.4% higher than the value under center-point conditions, which were the optimal levels derived from one-factor tests. The highest methane yield of 561 mL/g VSadded was achieved when the optimal acidified effluent was digested in the methanogenic phase, which was 27.5% higher than the average value at the center-point condition. Optimizing acidogenic process could highly improve biomethane production in corresponding methanogenic phase. The highest methane yield from anaerobic co-digestion of FW and RS was obtained when the optimal acidified effluent was digested in the methanogenic phase.
引用
收藏
页码:512 / 518
页数:7
相关论文
共 50 条
  • [1] Improving biomethane yield by controlling fermentation type of acidogenic phase in two-phase anaerobic co-digestion of food waste and rice straw
    Chen, Xue
    Yuan, Hairong
    Zou, Dexun
    Liu, Yanping
    Zhu, Baoning
    Chufo, Akiber
    Jaffar, Muhammad
    Li, Xiujin
    Chemical Engineering Journal, 2015, 273 : 254 - 260
  • [2] Improving biomethane yield by controlling fermentation type of acidogenic phase in two-phase anaerobic co-digestion of food waste and rice straw
    Chen, Xue
    Yuan, Hairong
    Zou, Dexun
    Liu, Yanping
    Zhu, Baoning
    Chufo, Akiber
    Jaffar, Muhammad
    Li, Xiujin
    CHEMICAL ENGINEERING JOURNAL, 2015, 273 : 254 - 260
  • [3] Optimization of process parameters for accelerated methane yield from anaerobic co-digestion of rice straw and food waste
    Kainthola, Jyoti
    Kalamdhad, Ajay S.
    Goud, Vaibhav V.
    RENEWABLE ENERGY, 2020, 149 (149) : 1352 - 1359
  • [4] Optimizing Anaerobic Co-Digestion Process of Cattle Manure and Corn Straw by Response Surface Methodology
    Pei Zhanjiang
    Shi Fengmei
    Wang Su
    Lu Binyu
    Liu Yijun
    Liu Jie
    JOURNAL OF BIOBASED MATERIALS AND BIOENERGY, 2019, 13 (05) : 611 - 619
  • [5] Response Surface Methodology Application for the Optimization of Biogas Yield from an Anaerobic Co-Digestion Process
    Efetobor, U. J.
    Onokwai, A. O.
    Onokpite, E.
    Okonkwo, U. C.
    PORTUGALIAE ELECTROCHIMICA ACTA, 2023, 42 (03) : 205 - 221
  • [6] High-solid Anaerobic Co-digestion of Food Waste and Rice Straw for Biogas Production
    Pei Zhan-jiang
    Liu Jie
    Shi Feng-mei
    Wang Su
    Gao Ya-bing
    Zhang Da-lei
    Journal of Northeast Agricultural University(English Edition), 2014, 21 (04) : 61 - 66
  • [7] Enhanced biomethane production by thermophilic high-solid anaerobic co-digestion of rice straw and food waste: Cellulose degradation and microbial structure
    Liu, Yaqian
    Watanabe, Ryoya
    Li, Qian
    Luo, Yutong
    Tsuzuki, Naohito
    Ren, Yuanyuan
    Qin, Yu
    Li, Yu-You
    CHEMICAL ENGINEERING JOURNAL, 2025, 503
  • [8] Optimization of methane production during anaerobic co-digestion of rice straw and hydrilla verticillata using response surface methodology
    Kainthola, Jyoti
    Kalamdhad, Ajay S.
    Goud, Vaibhav V.
    FUEL, 2019, 235 : 92 - 99
  • [9] Biogas yield assessment from the anaerobic co-digestion of food waste and cymbopogoncitratus
    Owamah, H. I.
    JOURNAL OF MATERIAL CYCLES AND WASTE MANAGEMENT, 2020, 22 (06) : 2012 - 2019
  • [10] Optimizing anaerobic co-digestion of Xyris capensis and duck waste using neuro-fuzzy model and response surface methodology
    Olatunji, Kehinde O.
    Madyira, Daniel M.
    Adeleke, Oluwatobi
    FUEL, 2023, 354