Semiclassical Phase Analysis for a Trapped-Atom Sagnac Interferometer

被引:2
|
作者
Luo, Zhe [1 ]
Moan, E. R. [1 ]
Sackett, C. A. [1 ]
机构
[1] Univ Virginia, Phys Dept, Charlottesville, VA 22904 USA
基金
美国国家科学基金会;
关键词
atom interferometry; Bose-Einstein condensation; Sagnac interferometer; magnetic trapping;
D O I
10.3390/atoms9020021
中图分类号
O64 [物理化学(理论化学)、化学物理学]; O56 [分子物理学、原子物理学];
学科分类号
070203 ; 070304 ; 081704 ; 1406 ;
摘要
A Sagnac atom interferometer can be constructed using a Bose-Einstein condensate trapped in a cylindrically symmetric harmonic potential. Using the Bragg interaction with a set of laser beams, the atoms can be launched into circular orbits, with two counterpropagating interferometers allowing many sources of common-mode noise to be excluded. In a perfectly symmetric and harmonic potential, the interferometer output would depend only on the rotation rate of the apparatus. However, deviations from the ideal case can lead to spurious phase shifts. These phase shifts have been theoretically analyzed for anharmonic perturbations up to quartic in the confining potential, as well as angular deviations of the laser beams, timing deviations of the laser pulses, and motional excitations of the initial condensate. Analytical and numerical results show the leading effects of the perturbations to be second order. The scaling of the phase shifts with the number of orbits and the trap axial frequency ratio are determined. The results indicate that sensitive parameters should be controlled at the 10(-5) level to accommodate a rotation sensing accuracy of 10(-9) rad/s. The leading-order perturbations are suppressed in the case of perfect cylindrical symmetry, even in the presence of anharmonicity and other errors. An experimental measurement of one of the perturbation terms is presented.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Contrast decay in a trapped-atom interferometer
    Hilico, A.
    Solaro, C.
    Zhou, M. -K.
    Lopez, M.
    dos Santos, F. Pereira
    PHYSICAL REVIEW A, 2015, 91 (05):
  • [2] Trapped-atom interferometer in a magnetic microtrap
    Hänsel, W.
    Reichel, J.
    Hommelhoff, P.
    Hänsch, T.W.
    Physical Review A. Atomic, Molecular, and Optical Physics, 2001, 64 (06): : 1 - 063607
  • [3] Trapped-atom interferometer with ultracold Sr atoms
    Zhang, Xian
    del Aguila, Ruben Pablo
    Mazzoni, Tommaso
    Poli, Nicola
    Tino, Guglielmo M.
    PHYSICAL REVIEW A, 2016, 94 (04)
  • [4] Phase diffusion in trapped-atom interferometers
    Ivannikov, Valentin
    Sidorov, Andrei I.
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2018, 51 (20)
  • [5] Trapped-atom interferometer in a magnetic microtrap -: art. no. 063607
    Hänsel, W
    Reichel, J
    Hommelhoff, P
    Hänsch, TW
    PHYSICAL REVIEW A, 2001, 64 (06): : 6
  • [6] Effect of trap symmetry and atom-atom interactions on a trapped-atom interferometer with internal state labeling
    Dupont-Nivet, M.
    Westbrook, C., I
    Schwartz, S.
    PHYSICAL REVIEW A, 2021, 103 (02)
  • [7] Controlling the dynamical scale factor in a trapped atom Sagnac interferometer
    Zhou, Yijia
    Lesanovsky, Igor
    Fernholz, Thomas
    Li, Weibin
    PHYSICAL REVIEW A, 2020, 101 (01)
  • [8] Tunneling of trapped-atom Bose condensates
    Shenoy, SR
    PRAMANA-JOURNAL OF PHYSICS, 2002, 58 (02): : 385 - 397
  • [9] Stability of a trapped-atom clock on a chip
    Szmuk, R.
    Dugrain, V.
    Maineult, W.
    Reichel, J.
    Rosenbusch, P.
    PHYSICAL REVIEW A, 2015, 92 (01):
  • [10] Tunneling of trapped-atom Bose condensates
    Subodh R Shenoy
    Pramana, 2002, 58 : 385 - 397