Automated Training of Deep Convolutional Neural Networks for Cell Segmentation

被引:98
|
作者
Sadanandan, Sajith Kecheril [1 ,2 ]
Ranefall, Petter [1 ,2 ]
Le Guyader, Sylvie [3 ]
Wahlby, Carolina [1 ,2 ]
机构
[1] Uppsala Univ, Dept Informat Technol, Uppsala, Sweden
[2] SciLifeLab, Uppsala, Sweden
[3] Karolinska Inst, Novum, Dept Biosci & Nutr, Ctr Biosci, Huddinge, Sweden
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
基金
欧洲研究理事会; 瑞典研究理事会;
关键词
D O I
10.1038/s41598-017-07599-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Deep Convolutional Neural Networks (DCNN) have recently emerged as superior for many image segmentation tasks. The DCNN performance is however heavily dependent on the availability of large amounts of problem-specific training samples. Here we show that DCNNs trained on ground truth created automatically using fluorescently labeled cells, perform similar to manual annotations.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Automated Training of Deep Convolutional Neural Networks for Cell Segmentation
    Sajith Kecheril Sadanandan
    Petter Ranefall
    Sylvie Le Guyader
    Carolina Wählby
    Scientific Reports, 7
  • [2] Automated Segmentation of Geographic Atrophy Using Deep Convolutional Neural Networks
    Hu, Zhihong
    Wang, Ziyuan
    Sadda, SriniVas R.
    MEDICAL IMAGING 2018: COMPUTER-AIDED DIAGNOSIS, 2018, 10575
  • [3] Accelerating the Training of Convolutional Neural Networks for Image Segmentation with Deep Active Learning
    Chen, Weitao
    Salay, Rick
    Sedwards, Sean
    Abdelzad, Vahdat
    Czarnecki, Krzysztof
    2020 IEEE 23RD INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2020,
  • [4] Lesion Segmentation and Automated Melanoma Detection using Deep Convolutional Neural Networks and XGBoost
    Hung N Pham
    Koay, Chin Yang
    Chakraborty, Tanmoy
    Gupta, Sudhanshu
    Tan, Boon Leong
    Wu, Huaqing
    Vardhan, Apurva
    Quang H Nguyen
    Palaparthi, Nirmal Raja
    Binh P Nguyen
    Chua, Matthew C. H.
    PROCEEDINGS OF 2019 INTERNATIONAL CONFERENCE ON SYSTEM SCIENCE AND ENGINEERING (ICSSE), 2019, : 142 - 147
  • [5] Improved Automated Segmentation of Human Kidney Organoids Using Deep Convolutional Neural Networks
    MacDonald, Michael
    Fennel, Theron R.
    Singanamalli, Asha
    Cruz, Nelly M.
    Yousefhussein, Mohammad
    Al-Kofahi, Yousef
    Freedman, Benjamin S.
    MEDICAL IMAGING 2020: IMAGE PROCESSING, 2021, 11313
  • [6] Deep convolutional neural networks for automated segmentation of brain metastases trained on clinical data
    Khaled Bousabarah
    Maximilian Ruge
    Julia-Sarita Brand
    Mauritius Hoevels
    Daniel Rueß
    Jan Borggrefe
    Nils Große Hokamp
    Veerle Visser-Vandewalle
    David Maintz
    Harald Treuer
    Martin Kocher
    Radiation Oncology, 15
  • [7] Deep convolutional neural networks for automated segmentation of brain metastases trained on clinical data
    Bousabarah, Khaled
    Ruge, Maximilian
    Brand, Julia-Sarita
    Hoevels, Mauritius
    Ruess, Daniel
    Borggrefe, Jan
    Hokamp, Nils Grosse
    Visser-Vandewalle, Veerle
    Maintz, David
    Treuer, Harald
    Kocher, Martin
    RADIATION ONCOLOGY, 2020, 15 (01)
  • [8] LUNG LOBE SEGMENTATION WITH AUTOMATED QUALITY ASSURANCE USING DEEP CONVOLUTIONAL NEURAL NETWORKS
    Ram, Sundaresh
    Humphries, Stephen M.
    Lynch, David A.
    Galban, Craig J.
    Hatt, Charles R.
    2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING WORKSHOPS (IEEE ISBI WORKSHOPS 2020), 2020,
  • [9] Automated Liver Lesion Segmentation with Convolutional Neural Networks
    Sall, Sean
    Lieman-Sifry, Jesse
    Lau, Felix
    Golden, Daniel
    HEPATOLOGY, 2018, 68 : 186A - 186A
  • [10] Deep Context Convolutional Neural Networks for Semantic Segmentation
    Yang, Wenbin
    Zhou, Quan
    Fan, Yawen
    Gao, Guangwei
    Wu, Songsong
    Ou, Weihua
    Lu, Huimin
    Cheng, Jie
    Latecki, Longin Jan
    COMPUTER VISION, PT I, 2017, 771 : 696 - 704