LOCAL CONTINUITY OF WEAK SOLUTIONS TO THE STEFAN PROBLEM INVOLVING THE SINGULAR p-LAPLACIAN

被引:1
|
作者
Liao, Naian [1 ]
机构
[1] Univ Salzburg, Fachbereich Math, Hellbrunner Str 34, A-5020 Salzburg, Austria
关键词
Stefan problem; parabolic p-Laplacian; local continuity; intrinsic scaling; expansion of positivity; TEMPERATURE;
D O I
10.1137/21M1402443
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish the local continuity of locally bounded weak solutions (temperatures) to the doubly singular parabolic equation modeling the phase transition of a material: \partial t\beta (u) - \Delta pu 3 N+1 < p < 2, where \beta is a maximal monotone graph with a jump at zero and \Delta p is the p-Laplacian. Moreover, a logarithmic type modulus of continuity is quantified, which has been conjectured to be optimal.
引用
收藏
页码:2570 / 2586
页数:17
相关论文
共 50 条