Heteroepitaxial van der Waals semiconductor superlattices

被引:77
|
作者
Jin, Gangtae [1 ,2 ]
Lee, Chang-Soo [1 ,2 ]
Okello, Odongo F. N. [2 ]
Lee, Suk-Ho [1 ,2 ]
Park, Min Yeong [1 ,2 ]
Cha, Soonyoung [1 ]
Seo, Seung-Young [1 ,2 ]
Moon, Gunho [1 ,2 ]
Min, Seok Young [1 ,2 ]
Yang, Dong-Hwan [2 ]
Han, Cheolhee [1 ,2 ]
Ahn, Hyungju [3 ]
Lee, Jekwan [4 ]
Choi, Hyunyong [4 ]
Kim, Jonghwan [1 ,2 ]
Choi, Si-Young [2 ]
Jo, Moon-Ho [1 ,2 ]
机构
[1] Inst Basic Sci IBS, Ctr Artificial Low Dimens Elect Syst, Pohang, South Korea
[2] Pohang Univ Sci & Technol POSTECH, Dept Mat Sci & Engn, Pohang, South Korea
[3] Pohang Accelerator Lab, Pohang, South Korea
[4] Seoul Natl Univ, Dept Phys & Astron, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
LIGHT-EMITTING-DIODES; ELECTRONIC-PROPERTIES; SCALE; HETEROSTRUCTURES;
D O I
10.1038/s41565-021-00942-z
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Kinetics-controlled van der Waals epitaxy in the near-equilibrium limit by metal-organic chemical vapour deposition enables precise layer-by-layer stacking of dissimilar transition metal dichalcogenides. A broad range of transition metal dichalcogenide (TMDC) semiconductors are available as monolayer (ML) crystals, so the precise integration of each kind into van der Waals (vdW) superlattices (SLs) could enable the realization of novel structures with previously unexplored functionalities. Here we report the atomic layer-by-layer epitaxial growth of vdW SLs with programmable stacking periodicities, composed of more than two kinds of dissimilar TMDC MLs, such as MoS2, WS2 and WSe2. Using kinetics-controlled vdW epitaxy in the near-equilibrium limit by metal-organic chemical vapour depositions, we achieved precise ML-by-ML stacking, free of interlayer atomic mixing, which resulted in tunable two-dimensional vdW electronic systems. As an example, by exploiting the series of type II band alignments at coherent two-dimensional vdW heterointerfaces, we demonstrated valley-polarized carrier excitations-one of the most distinctive electronic features in vdW ML semiconductors-which scale with the stack numbers n in our (MoS2/WS2)(n) SLs on optical excitations.
引用
收藏
页码:1092 / +
页数:8
相关论文
共 50 条
  • [1] Heteroepitaxial van der Waals semiconductor superlattices
    Gangtae Jin
    Chang-Soo Lee
    Odongo F. N. Okello
    Suk-Ho Lee
    Min Yeong Park
    Soonyoung Cha
    Seung-Young Seo
    Gunho Moon
    Seok Young Min
    Dong-Hwan Yang
    Cheolhee Han
    Hyungju Ahn
    Jekwan Lee
    Hyunyong Choi
    Jonghwan Kim
    Si-Young Choi
    Moon-Ho Jo
    Nature Nanotechnology, 2021, 16 : 1092 - 1098
  • [2] Van der Waals superlattices
    Huaying Ren
    Zhong Wan
    Xiangfeng Duan
    National Science Review, 2022, 9 (05) : 14 - 16
  • [3] Van der Waals superlattices
    Ren, Huaying
    Wan, Zhong
    Duan, Xiangfeng
    NATIONAL SCIENCE REVIEW, 2022, 9 (05)
  • [4] van der Waals Heteroepitaxy of Semiconductor Nanowires
    Hong, Young Joon
    Lee, Chul-Ho
    SEMICONDUCTOR NANOWIRES I: GROWTH AND THEORY, 2015, 93 : 125 - 172
  • [5] Van der Waals Effects on semiconductor clusters
    Li, Haisheng
    Chen, Weiguang
    Han, Xiaoyu
    Li, Liben
    Sun, Qiang
    Guo, Zhengxiao
    Jia, Yu
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2015, 36 (25) : 1919 - 1927
  • [6] Recent experimental research progress of two-dimensional van der Waals semiconductor moir? superlattices
    Li, Ting-Xin
    ACTA PHYSICA SINICA, 2022, 71 (12)
  • [7] Topological mosaics in moiré superlattices of van der Waals heterobilayers
    Tong Q.
    Yu H.
    Zhu Q.
    Wang Y.
    Xu X.
    Yao W.
    Nature Physics, 2017, 13 (4) : 356 - 362
  • [8] Topological mosaics in moire superlattices of van der Waals heterobilayers
    Tong, Qingjun
    Yu, Hongyi
    Zhu, Qizhong
    Wang, Yong
    Xu, Xiaodong
    Yao, Wang
    NATURE PHYSICS, 2017, 13 (04) : 356 - 362
  • [9] A novel van der Waals semiconductor: InTeI crystal
    Zhou, Xuan
    Ruan, Yinjie
    Yin, Handi
    Sun, Yue
    Lv, Bin
    Cheng, Guofeng
    OPTICAL MATERIALS, 2021, 119
  • [10] Interlayer excitons in a bulk van der Waals semiconductor
    Arora, Ashish
    Drueppel, Matthias
    Schmidt, Robert
    Deilmann, Thorsten
    Schneider, Robert
    Molas, Maciej R.
    Marauhn, Philipp
    de Vasconcellos, Steffen Michaelis
    Potemski, Marek
    Rohlfing, Michael
    Bratschitsch, Rudolf
    NATURE COMMUNICATIONS, 2017, 8