Area-Minimizing Projective Planes in 3-Manifolds

被引:0
|
作者
Bray, H. [1 ]
Brendle, S. [2 ]
Eichmair, M. [3 ]
Neves, A. [4 ]
机构
[1] Duke Univ, Dept Math, Durham, NC 27708 USA
[2] Stanford Univ, Dept Math, Stanford, CA 94305 USA
[3] MIT, Dept Math, Cambridge, MA 02139 USA
[4] Univ London Imperial Coll Sci Technol & Med, London SW7 2RH, England
基金
美国国家科学基金会;
关键词
RICCI FLOW; EXTINCTION TIME; EXISTENCE; CURVATURE; MANIFOLDS; SURFACES; SPHERES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (M, g) be a compact Riemannian manifold of dimension 3, and let F denote the collection of all embedded surfaces homeomorphic to RP2. We study the infimum of the areas of all surfaces in F. This quantity is related to the systole of (M, g). It makes sense whenever F is nonempty. In this paper, we give an upper bound for this quantity in terms of the minimum of the scalar curvature of (M g). Moreover, we show that equality holds if and only if (M, g) is isometric to RP3 up to scaling. The proof uses the formula for the second variation of area and Hamilton's Ricci flow. (C) 2010 Wiley Periodicals, Inc.
引用
收藏
页码:1237 / 1247
页数:11
相关论文
共 50 条