Fluorinating the Solid Electrolyte Interphase by Rational Molecular Design for Practical Lithium-Metal Batteries

被引:106
|
作者
Xie, Jin [1 ]
Sun, Shu-Yu [1 ]
Chen, Xiang [1 ]
Hou, Li-Peng [1 ]
Li, Bo-Quan [2 ]
Peng, Hong-Jie [3 ]
Huang, Jia-Qi [2 ]
Zhang, Xue-Qiang [2 ]
Zhang, Qiang [1 ]
机构
[1] Tsinghua Univ, Dept Chem Engn, Beijing Key Lab Green Chem React Engn & Technol, Beijing 100084, Peoples R China
[2] Beijing Inst Technol, Adv Res Inst Multidisciplinary Sci, Beijing 100081, Peoples R China
[3] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu 611731, Sichuan, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Fluorinated Electrolytes; Fluorinated Solid Electrolyte Interphase; Lithium-Metal Batteries; Molecular Design; Pouch Cells; HIGH-ENERGY-DENSITY; SULFUR BATTERIES; RECHARGEABLE LITHIUM; PERFORMANCE; ANODE; CHALLENGES; SOLVENTS; CATHODES; PROGRESS; LIF;
D O I
10.1002/anie.202204776
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The lifespan of practical lithium (Li)-metal batteries is severely hindered by the instability of Li-metal anodes. Fluorinated solid electrolyte interphase (SEI) emerges as a promising strategy to improve the stability of Li-metal anodes. The rational design of fluorinated molecules is pivotal to construct fluorinated SEI. Herein, design principles of fluorinated molecules are proposed. Fluoroalkyl (-CF2CF2-) is selected as an enriched F reservoir and the defluorination of the C-F bond is driven by leaving groups on beta-sites. An activated fluoroalkyl molecule (AFA), 2,2,3,3-tetrafluorobutane-1,4-diol dinitrate is unprecedentedly proposed to render fast and complete defluorination and generate uniform fluorinated SEI on Li-metal anodes. In Li-sulfur (Li-S) batteries under practical conditions, the fluorinated SEI constructed by AFA undergoes 183 cycles, which is three times the SEI formed by LiNO3. Furthermore, a Li-S pouch cell of 360 Wh kg(-1) delivers 25 cycles with AFA. This work demonstrates rational molecular design principles of fluorinated molecules to construct fluorinated SEI for practical Li-metal batteries.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Implantable Solid Electrolyte Interphase in Lithium-Metal Batteries
    Cheng, Xin-Bing
    Yan, Chong
    Chen, Xiang
    Guan, Chao
    Huang, Jia-Qi
    Peng, Hong-Jie
    Zhang, Rui
    Yang, Shu-Ting
    Zhang, Qiang
    CHEM, 2017, 2 (02): : 258 - 270
  • [2] Solvation Rule for Solid-Electrolyte Interphase Enabler in Lithium-Metal Batteries
    Su, Chi-Cheung
    He, Meinan
    Shi, Jiayan
    Amine, Rachid
    Zhang, Jian
    Amine, Khalil
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (41) : 18229 - 18233
  • [3] Robust Transport: An Artificial Solid Electrolyte Interphase Design for Anode-Free Lithium-Metal Batteries
    Sun, Jinran
    Zhang, Shu
    Li, Jiedong
    Xie, Bin
    Ma, Jun
    Dong, Shanmu
    Cui, Guanglei
    ADVANCED MATERIALS, 2023, 35 (20)
  • [4] Fluorinating solid electrolyte interphase by regulating polymer-solvent interaction in lithium metal batteries
    Zhan, Ying-Xin
    Liu, Ze-Yu
    Geng, Yi-Yun
    Shi, Peng
    Yao, Nan
    Jin, Cheng-Bin
    Li, Bo-Quan
    Ye, Gang
    Zhang, Xue-Qiang
    Huang, Jia-Qi
    ENERGY STORAGE MATERIALS, 2023, 60
  • [5] Interfacial Evolution of Lithium Dendrites and Their Solid Electrolyte Interphase Shells of Quasi-Solid-State Lithium-Metal Batteries
    Shi, Yang
    Wan, Jing
    Liu, Gui-Xian
    Zuo, Tong-Tong
    Song, Yue-Xian
    Liu, Bing
    Guo, Yu-Guo
    Wen, Rui
    Wan, Li-Jun
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (41) : 18120 - 18125
  • [6] Stabilization of Lithium-Metal Batteries Based on the in Situ Formation of a Stable Solid Electrolyte Interphase Layer
    Park, Seong-Jin
    Hwang, Jang-Yeon
    Yoon, Chong S.
    Jung, Hun-Gi
    Sun, Yang-Kook
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (21) : 17985 - 17993
  • [7] An Inorganic-Rich Solid Electrolyte Interphase for Advanced Lithium-Metal Batteries in Carbonate Electrolytes
    Liu, Sufu
    Ji, Xiao
    Piao, Nan
    Chen, Ji
    Eidson, Nico
    Xu, Jijian
    Wang, Pengfei
    Chen, Long
    Zhang, Jiaxun
    Deng, Tao
    Hou, Singyuk
    Jin, Ting
    Wan, Hongli
    Li, Jingru
    Tu, Jiangping
    Wang, Chunsheng
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (07) : 3661 - 3671
  • [8] Buildup of the Solid Electrolyte Interphase on Lithium-Metal Anodes: Reactive Molecular Dynamics Study
    Bertolini, Samuel
    Balbuena, Perla B.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (20): : 10783 - 10791
  • [9] Designing Anion-Derived Solid Electrolyte Interphase in a Siloxane-Based Electrolyte for Lithium-Metal Batteries
    Wu, Jianyang
    Zhou, Tianyi
    Zhong, Bing
    Wang, Qian
    Liu, Wen
    Zhou, Henghui
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (24) : 27873 - 27881
  • [10] Designing Anion-Derived Solid Electrolyte Interphase in a Siloxane-Based Electrolyte for Lithium-Metal Batteries
    Wu, Jianyang
    Zhou, Tianyi
    Zhong, Bing
    Wang, Qian
    Liu, Wen
    Zhou, Henghui
    ACS Applied Materials and Interfaces, 2022, 14 (24): : 27873 - 27881