Wind load and structural analysis for standalone solar parabolic trough collector

被引:15
|
作者
Natraj [1 ]
Rao, B. N. [2 ]
Reddy, K. S. [1 ]
机构
[1] Indian Inst Technol Madras, Dept Mech Engn, Heat Transfer & Thermal Power Lab, Chennai 600036, Tamil Nadu, India
[2] Indian Inst Technol Madras, Dept Civil Engn, Struct Engn Div, Chennai 600036, Tamil Nadu, India
关键词
Solar energy; Wind analysis; Slope deviation; Parabolic trough collector; MIRROR SHAPE; PERFORMANCE; DESIGN; ACCURACY; FLOW;
D O I
10.1016/j.renene.2021.04.007
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Solar energy is one of the emerging technologies and the use of concentrating power technology is increasing in solar power plants. Parabolic trough collector is a concentrating solar power technology that is situated in the open terrain and subjected to wind loads. The structural stability of these devices under such loads determines the ability to accurately concentrate the rays at the absorber tube, which affects the overall optical and thermal efficiencies. A detailed numerical analysis is carried out at different wind loads and design conditions. It is observed that for a change in velocity from 5 m/ s to 25 m/s, slope deviations increase from 1.21 mrad to 3.11 mrad at the surface of the reflector exceeding the shape quality of the mirror panels. Higher yaw angles and pitch angles of 60 degrees and 120 degrees are observed to be decisive in the design of collectors. Roof-mounted collectors experience a 40% higher drag force than ground-mounted collectors at a 0 degrees pitch angle. For the Aluminium trough, the slope deviation at the surface of the reflector is higher by 4.62% than glass. The study will be helpful for engineers and scientists in the design of the parabolic trough collectors. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页码:688 / 703
页数:16
相关论文
共 50 条
  • [1] Study of wind load effects on concentration efficiency of parabolic trough collector
    Zhang Z.
    Sun J.
    Wang L.
    Wei J.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2021, 42 (11): : 98 - 102
  • [2] Modelling and Exergetic Analysis of a Parabolic Trough Solar Collector
    Yahi, F.
    Belhamel, M.
    Berdja, M.
    Ouali, A. M.
    Tetbirt
    Mokrane, M.
    Djebiret, M. A.
    2019 INTERNATIONAL CONFERENCE ON ENVIRONMENT, RESOURCES AND ENERGY ENGINEERING, 2020, 464
  • [3] Analysis of Annual Performance of a Parabolic Trough Solar Collector
    Liang, Hongbo
    Zheng, Chenxiao
    Zheng, Wandong
    You, Shijun
    Zhang, Huan
    8TH INTERNATIONAL CONFERENCE ON APPLIED ENERGY (ICAE2016), 2017, 105 : 888 - 894
  • [4] Numerical simulation of wind flow around a parabolic trough solar collector
    Hachicha, A. A.
    Rodriguez, I.
    Castro, J.
    Oliva, A.
    APPLIED ENERGY, 2013, 107 : 426 - 437
  • [5] Design of solar parabolic trough collector
    Bharti, Alka
    Paul, Bireswar
    2017 INTERNATIONAL CONFERENCE ON ADVANCES IN MECHANICAL, INDUSTRIAL, AUTOMATION AND MANAGEMENT SYSTEMS (AMIAMS) - PROCEEDINGS, 2017, : 302 - 306
  • [6] Exergyanalysis of parabolic trough solar collector
    Yang, Y. (hongjuanhou@ncepu.edu.cn), 1600, Science Press (35):
  • [7] The SkyTrough™ Parabolic Trough Solar Collector
    Farr, Adrian
    Gee, Randy
    ES2009: PROCEEDINGS OF THE ASME 3RD INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, VOL 2, 2009, : 573 - 580
  • [8] A review of solar parabolic trough collector
    Jebasingh, V. K.
    Herbert, G. M. Joselin
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 54 : 1085 - 1091
  • [9] Gravity & wind load analysis and optical study of solar parabolic trough collector with composite facets using optimized modelling approach
    Reddy, K. S.
    Singla, Hitesh
    Natraj
    ENERGY, 2019, 189
  • [10] Optical and structural optimization of a large aperture solar parabolic trough collector
    Natraj
    Rao, B. N.
    Reddy, K. S.
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2022, 53