Landesman-Lazer type results for second order Hamilton-Jacobi-Bellman equations

被引:16
|
作者
Felmer, Patricio [1 ]
Quaas, Alexander [2 ]
Sirakov, Boyan [3 ,4 ]
机构
[1] Univ Chile, Dept Ingn Matemat, Santiago, Chile
[2] Univ Tecn Federico Santa Maria, Dept Matemat, Valparaiso, Chile
[3] Univ Paris 10, UFR SEGMI, F-92001 Nanterre, France
[4] EHESS, CAMS, F-75006 Paris, France
关键词
Hamilton-Jacobi-Bellman equation; Landesman-Lazer condition; Bifurcation from infinity; Principal eigenvalues; ELLIPTIC-EQUATIONS; MAXIMUM PRINCIPLE; LINEAR PART; P-LAPLACIAN; BIFURCATION; EIGENVALUE; OPERATORS; INFINITY; NONLINEARITIES; PERTURBATIONS;
D O I
10.1016/j.jfa.2010.03.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the boundary-value problem {F(D(2)u, Du, u, x) + lambda u = f(x, u) in Omega, u = 0 on partial derivative Omega, where the second order differential operator F is of Hamilton-Jacobi-Bellman type, f is sub-linear in u at infinity and Omega subset of R(N) is a regular bounded domain. We extend the well-known Landesman-Lazer conditions to study various bifurcation phenomena taking place near the two principal eigenvalues associated to the differential operator. We provide conditions under which the solution branches extend globally along the eigenvalue gap. We also present examples illustrating the results and hypotheses. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:4154 / 4182
页数:29
相关论文
共 50 条
  • [1] MULTIGRID METHODS FOR SECOND ORDER HAMILTON-JACOBI-BELLMAN AND HAMILTON-JACOBI-BELLMAN-ISAACS EQUATIONS
    Han, Dong
    Wan, Justin W. L.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (05): : S323 - S344
  • [2] Second order Hamilton-Jacobi-Bellman equations with an unbounded operator
    Zalinescu, Adrian
    Nonlinear Analysis, Theory, Methods and Applications, 2012, 75 (13): : 4784 - 4797
  • [3] Second order Hamilton-Jacobi-Bellman equations with an unbounded operator
    Zalinescu, Adrian
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (13) : 4784 - 4797
  • [4] Second order Hamilton-Jacobi-Bellman inequalities
    Zalinescu, A
    COMPTES RENDUS MATHEMATIQUE, 2002, 335 (07) : 591 - 596
  • [5] Hamilton-Jacobi-Bellman Equations
    Festa, Adriano
    Guglielmi, Roberto
    Hermosilla, Christopher
    Picarelli, Athena
    Sahu, Smita
    Sassi, Achille
    Silva, Francisco J.
    OPTIMAL CONTROL: NOVEL DIRECTIONS AND APPLICATIONS, 2017, 2180 : 127 - 261
  • [6] ON THE HAMILTON-JACOBI-BELLMAN EQUATIONS
    LIONS, PL
    ACTA APPLICANDAE MATHEMATICAE, 1983, 1 (01) : 17 - 41
  • [7] A Landesman-Lazer type condition for second-order differential equations with a singularity at resonance
    Li, Jin
    Wang, Zaihong
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2015, 60 (05) : 620 - 634
  • [8] Nagumo and Landesman-Lazer type conditions for nonlinear second order systems
    Pablo Amster
    Nonlinear Differential Equations and Applications NoDEA, 2007, 13 : 699 - 711
  • [9] Nagumo and Landesman-Lazer type conditions for nonlinear second order systems
    Amster, Pablo
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2007, 13 (5-6): : 699 - 711
  • [10] DEGENERATE HAMILTON-JACOBI-BELLMAN EQUATIONS
    LIONS, PL
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1979, 289 (05): : 329 - 332