SPECTRAL CONDITIONS FOR UNIFORM P-ERGODICITIES OF MARKOV OPERATORS ON ABSTRACT STATES SPACES

被引:4
|
作者
Erkursun-Ozcan, Nazife [1 ]
Mukhamedov, Farrukh [2 ]
机构
[1] Hacettepe Univ, Dept Math, Fac Sci, TR-06800 Ankara, Turkey
[2] United Arab Emirates Univ, Dept Math Sci, Coll Sci, Al Ain 15551, U Arab Emirates
关键词
ORDERED BANACH-SPACES; STABILITY; CONVERGENCE; SEMIGROUPS; PRODUCTS;
D O I
10.1017/S0017089520000440
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, we deal with asymptotical stability of Markov operators acting on abstract state spaces (i.e. an ordered Banach space, where the norm has an additivity property on the cone of positive elements). Basically, we are interested in the rate of convergence when a Markov operator T satisfies the uniform P-ergodicity, i.e. vertical bar vertical bar Tn - P vertical bar vertical bar -> 0, here P is a projection. We have showed that T is uniformly P-ergodic if and only if vertical bar vertical bar Tn - P vertical bar vertical bar = C beta(n), 0 < beta < 1. In this paper, we prove that such a beta is characterized by the spectral radius of T - P. Moreover, we give Deoblin's kind of conditions for the uniform P-ergodicity of Markov operators.
引用
收藏
页码:682 / 696
页数:15
相关论文
共 28 条
  • [1] UNIFORM ERGODICITIES OF MARKOV SEMIGROUPS ON ABSTRACT STATES SPACES
    Erkurşun-Özcan N.
    Mukhamedov F.
    Journal of Mathematical Sciences, 2022, 266 (3) : 448 - 460
  • [2] Generalized Dobrushin ergodicity coefficient and uniform ergodicities of Markov operators
    Mukhamedov, Farrukh
    Al-Rawashdeh, Ahmed
    POSITIVITY, 2020, 24 (04) : 855 - 890
  • [3] Generalized Dobrushin ergodicity coefficient and uniform ergodicities of Markov operators
    Farrukh Mukhamedov
    Ahmed Al-Rawashdeh
    Positivity, 2020, 24 : 855 - 890
  • [4] Uniform ergodicities and perturbation bounds of Markov chains on ordered Banach spaces
    Ozcan, Nazife Erkursun
    Mukhamedov, Farrukh
    37TH INTERNATIONAL CONFERENCE ON QUANTUM PROBABILITY AND RELATED TOPICS (QP37), 2017, 819
  • [5] Uniform ergodicities and perturbation bounds of Markov chains on base norm spaces
    Erkursun-Ozcan, Nazife
    Mukhamedov, Farrukh
    QUAESTIONES MATHEMATICAE, 2018, 41 (06) : 863 - 876
  • [6] Uniform Ergodicity of Lotz–Räbiger Nets of Markov Operators on Abstract State Spaces
    Nazife Erkurşun Özcan
    Farrukh Mukhamedov
    Results in Mathematics, 2018, 73
  • [7] Uniform Ergodicity of Lotz-Rabiger Nets of Markov Operators on Abstract State Spaces
    Ozcan, Nazife Erkursun
    Mukhamedov, Farrukh
    RESULTS IN MATHEMATICS, 2018, 73 (01)
  • [8] Spectral gaps of Schrodinger operators and diffusion operators on abstract Wiener spaces
    Gong, Fu-Zhou
    Liu, Yong
    Liu, Yuan
    Luo, De-Jun
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (09) : 5639 - 5675
  • [9] Stability Estimates of Markov Semigroups on Abstract States Spaces
    Erkursun-ozcan, Nazife
    Mukhamedov, Farrukh
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2020, 17 (02)
  • [10] Stability Estimates of Markov Semigroups on Abstract States Spaces
    Nazife Erkurşun-Özcan
    Farrukh Mukhamedov
    Mediterranean Journal of Mathematics, 2020, 17