The Dynamical Behaviors in a Stochastic SIS Epidemic Model with Nonlinear Incidence

被引:9
|
作者
Rifhat, Ramziya [1 ]
Ge, Qing [1 ]
Teng, Zhidong [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
基金
中国国家自然科学基金;
关键词
EXTINCTION; STABILITY; PERSISTENCE;
D O I
10.1155/2016/5218163
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A stochastic SIS-type epidemic model with general nonlinear incidence and disease-induced mortality is investigated. It is proved that the dynamical behaviors of the model are determined by a certain threshold value (R) over tilde (0). That is, when (R) over tilde (0) < 1 and together with an additional condition, the disease is extinct with probability one, and when <(R)over tilde>(0) > 1, the disease is permanent in the mean in probability, and when there is not disease-related death, the disease oscillates stochastically about a positive number. Furthermore, when (R) over tilde (0) > 1, the model admits positive recurrence and a unique stationary distribution. Particularly, the effects of the intensities of stochastic perturbation for the dynamical behaviors of the model are discussed in detail, and the dynamical behaviors for the stochastic SIS epidemic model with standard incidence are established. Finally, the numerical simulations are presented to illustrate the proposed open problems.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Dynamical analysis of a stochastic SIS epidemic model with nonlinear incidence rate and double epidemic hypothesis
    Anqi Miao
    Xinyang Wang
    Tongqian Zhang
    Wei Wang
    BG Sampath Aruna Pradeep
    Advances in Difference Equations, 2017
  • [2] Dynamical analysis of a stochastic SIS epidemic model with nonlinear incidence rate and double epidemic hypothesis
    Miao, Anqi
    Wang, Xinyang
    Zhang, Tongqian
    Wang, Wei
    Pradeep, B. G. Sampath Aruna
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [3] Dynamics of a stochastic SIS epidemic model with nonlinear incidence rates
    Ning Gao
    Yi Song
    Xinzeng Wang
    Jianxin Liu
    Advances in Difference Equations, 2019
  • [4] Dynamics of a stochastic SIS epidemic model with nonlinear incidence rates
    Gao, Ning
    Song, Yi
    Wang, Xinzeng
    Liu, Jianxin
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)
  • [5] Dynamical Behaviors of Stochastic SIS Epidemic Model with Ornstein-Uhlenbeck Process
    Zhang, Huina
    Sun, Jianguo
    Yu, Peng
    Jiang, Daqing
    AXIOMS, 2024, 13 (06)
  • [6] Dynamical behaviors of a discrete SIS epidemic model with standard incidence and stage structure
    Teng, Zhidong
    Nie, Linfei
    Xu, Jiabo
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [7] Dynamical behaviors of a discrete SIS epidemic model with standard incidence and stage structure
    Zhidong Teng
    Linfei Nie
    Jiabo Xu
    Advances in Difference Equations, 2013
  • [8] The stationary distribution in a stochastic SIS epidemic model with general nonlinear incidence
    Wen, Buyu
    Rifhat, Ramziya
    Teng, Zhidong
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 524 : 258 - 271
  • [9] Threshold dynamics of a stochastic SIS epidemic model with nonlinear incidence rate
    Liu, Qun
    Jiang, Daqing
    Hayat, Tasawar
    Alsaedi, Ahmed
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 526
  • [10] The effect of a generalized nonlinear incidence rate on the stochastic SIS epidemic model
    Lahrouz, Aadil
    Settati, Adel
    El Fatini, Mohamed
    Tridane, Abdessamad
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (01) : 1137 - 1146