Decomposition-Based Correlation Learning for Multi-Modal MRI-Based Classification of Neuropsychiatric Disorders

被引:4
|
作者
Liu, Liangliang [1 ]
Chang, Jing [1 ]
Wang, Ying [1 ]
Liang, Gongbo [2 ]
Wang, Yu-Ping [3 ]
Zhang, Hui [1 ]
机构
[1] Henan Agr Univ, Coll Informat & Management Sci, Zhengzhou, Peoples R China
[2] Eastern Kentucky Univ, Dept Comp Sci, Richmond, KY 40475 USA
[3] Tulane Univ, Biomed Engn Dept, New Orleans, LA 70118 USA
基金
中国国家自然科学基金;
关键词
multi-modal; decomposition-based; matrix decomposition; canonical correlation analysis; neuropsychiatric disorders; INDEPENDENT COMPONENT ANALYSIS; FUNCTIONAL CONNECTIVITY; ALZHEIMERS-DISEASE; BIPOLAR DISORDER; IMAGING DATA; SCHIZOPHRENIA; DIFFUSION; FMRI; FUSION; MATTER;
D O I
10.3389/fnins.2022.832276
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Multi-modal magnetic resonance imaging (MRI) is widely used for diagnosing brain disease in clinical practice. However, the high-dimensionality of MRI images is challenging when training a convolution neural network. In addition, utilizing multiple MRI modalities jointly is even more challenging. We developed a method using decomposition-based correlation learning (DCL). To overcome the above challenges, we used a strategy to capture the complex relationship between structural MRI and functional MRI data. Under the guidance of matrix decomposition, DCL takes into account the spike magnitude of leading eigenvalues, the number of samples, and the dimensionality of the matrix. A canonical correlation analysis (CCA) was used to analyze the correlation and construct matrices. We evaluated DCL in the classification of multiple neuropsychiatric disorders listed in the Consortium for Neuropsychiatric Phenomics (CNP) dataset. In experiments, our method had a higher accuracy than several existing methods. Moreover, we found interesting feature connections from brain matrices based on DCL that can differentiate disease and normal cases and different subtypes of the disease. Furthermore, we extended experiments on a large sample size dataset and a small sample size dataset, compared with several other well-established methods that were designed for the multi neuropsychiatric disorder classification; our proposed method achieved state-of-the-art performance on all three datasets.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] A Decomposition-Based Evolutionary Algorithm for Multi-modal Multi-objective Optimization
    Tanabe, Ryoji
    Ishibuchi, Hisao
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XV, PT I, 2018, 11101 : 249 - 261
  • [2] A multi-modal extraction integrated model for neuropsychiatric disorders classification
    Liu, Liangliang
    Liu, Zhihong
    Chang, Jing
    Xu, Xu
    PATTERN RECOGNITION, 2024, 155
  • [3] A Decomposition-based Hybrid Evolutionary Algorithm for Multi-modal Multi-objective Optimization
    Peng, Yiming
    Ishibuchi, Hisao
    2021 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2021, : 160 - 167
  • [4] A Decomposition-based Large-scale Multi-modal Multi-objective Optimization Algorithm
    Peng, Yiming
    Ishibuchi, Hisao
    2020 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2020,
  • [5] Multi-Modal Low-Data-Based Learning for Video Classification
    Citak, Erol
    Karsligil, Mine Elif
    APPLIED SCIENCES-BASEL, 2024, 14 (10):
  • [6] MRI-based Alzheimer's disease prediction via distilling the knowledge in multi-modal data
    Guan, Hao
    Wang, Chaoyue
    Tao, Dacheng
    NEUROIMAGE, 2021, 244
  • [7] Multi-modal long document classification based on Hierarchical Prompt and Multi-modal Transformer
    Liu, Tengfei
    Hu, Yongli
    Gao, Junbin
    Wang, Jiapu
    Sun, Yanfeng
    Yin, Baocai
    NEURAL NETWORKS, 2024, 176
  • [8] A Decomposition-based Multi-modal Multi-objective Evolutionary Algorithm with Problem Transformation into Two-objective Subproblems
    Nojima, Yusuke
    Fujii, Yuto
    Masuyama, Naoki
    Liu, Yiping
    Ishibuchi, Hisao
    PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2023 COMPANION, 2023, : 399 - 402
  • [9] Multi-modal intermediate integrative methods in neuropsychiatric disorders: A review
    Wang, Yanlin
    Tang, Shi
    Ma, Ruimin
    Zamit, Ibrahim
    Wei, Yanjie
    Pan, Yi
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2022, 20 : 6149 - 6162
  • [10] MPCM: Multi-modal User Portrait Classification Model Based on Collaborative Learning
    Liu, Jinhang
    Li, Lin
    INFORMATION TECHNOLOGY AND CONTROL, 2023, 52 (04): : 867 - 877