Filled Julia Sets of Chebyshev Polynomials

被引:2
|
作者
Christiansen, Jacob Stordal [1 ]
Henriksen, Christian [2 ]
Pedersen, Henrik Laurberg [3 ]
Petersen, Carsten Lunde [4 ]
机构
[1] Lund Univ, Ctr Math Sci, Box 118, S-22100 Lund, Sweden
[2] Tech Univ Denmark, DTU Compute, Build 303B, DK-2800 Lyngby, Denmark
[3] Univ Copenhagen, Dept Math Sci, Univ Pk 5, DK-2100 Copenhagen, Denmark
[4] Roskilde Univ, Dept Sci & Environm, DK-4000 Roskilde, Denmark
关键词
Chebyshev polynomials; Julia set; Green's function;
D O I
10.1007/s12220-021-00716-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the possible Hausdorff limits of the Julia sets and filled Julia sets of subsequences of the sequence of dual Chebyshev polynomials of a non-polar compact set K subset of C and compare such limits to K. Moreover, we prove that the measures of maximal entropy for the sequence of dual Chebyshev polynomials of K converges weak* to the equilibrium measure on K.
引用
收藏
页码:12250 / 12263
页数:14
相关论文
共 50 条
  • [1] Filled Julia Sets of Chebyshev Polynomials
    Jacob Stordal Christiansen
    Christian Henriksen
    Henrik Laurberg Pedersen
    Carsten Lunde Petersen
    The Journal of Geometric Analysis, 2021, 31 : 12250 - 12263
  • [2] CHEBYSHEV POLYNOMIALS FOR JULIA SETS
    KAMO, SO
    BORODIN, PA
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1994, (05): : 65 - 67
  • [3] Chebyshev Polynomials on Generalized Julia Sets
    Gökalp Alpan
    Computational Methods and Function Theory, 2016, 16 : 387 - 393
  • [4] Chebyshev Polynomials on Generalized Julia Sets
    Alpan, Gokalp
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2016, 16 (03) : 387 - 393
  • [5] Julia sets converging to filled quadratic Julia sets
    Kozma, Robert T.
    Devaney, Robert L.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2014, 34 : 171 - 184
  • [6] Julia and Mandelbrot sets of Chebyshev families
    Peherstorfer, F
    Stroh, C
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2001, 11 (09): : 2463 - 2481
  • [7] Julia sets of expanding polynomials
    Blokh, A
    Cleveland, C
    Misiurewicz, M
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2005, 25 : 1691 - 1718
  • [8] Julia Sets of Orthogonal Polynomials
    Jacob Stordal Christiansen
    Christian Henriksen
    Henrik Laurberg Pedersen
    Carsten Lunde Petersen
    Potential Analysis, 2019, 50 : 401 - 413
  • [9] Julia Sets of Orthogonal Polynomials
    Christiansen, Jacob Stordal
    Henriksen, Christian
    Pedersen, Henrik Laurberg
    Petersen, Carsten Lunde
    POTENTIAL ANALYSIS, 2019, 50 (03) : 401 - 413
  • [10] The topology of Julia sets for polynomials
    尹永成
    ScienceinChina,SerA., 2002, Ser.A.2002 (08) : 1020 - 1024