An Algorithmic Information Calculus for Causal Discovery and Reprogramming Systems

被引:0
|
作者
Zenil, Hector [1 ,2 ,3 ,4 ,5 ]
Kiani, Narsis A. [1 ,2 ,4 ,5 ]
Marabita, Francesco [2 ,4 ]
Deng, Yue [2 ]
Elias, Szabolcs [2 ,4 ]
Schmidt, Angelika [2 ,4 ]
Ball, Gordon [2 ,4 ]
Tegner, Jesper [2 ,4 ,6 ]
机构
[1] Karolinska Inst, Ctr Mol Med, Algorithm Dynam Lab, S-17176 Stockholm, Sweden
[2] Karolinska Inst, Dept Med, Ctr Mol Med, Unit Computat Med, S-17176 Stockholm, Sweden
[3] Oxford Immune Algorithm, Reading RG1 3EU, Berks, England
[4] Sci Life Lab, S-17165 Solna, Sweden
[5] LABORES Nat & Digital Sci, Algorithm Nat Grp, F-75006 Paris, France
[6] King Abdullah Univ Sci & Technol KAUST, Biol & Environm Sci & Engn Div, Comp Elect & Math Sci & Engn Div, Thuwal 239556900, Saudi Arabia
关键词
REGULATORY NETWORK; IDENTIFICATION; COMPLEXITY; PROGRAMS; DYNAMICS;
D O I
10.1016/j.isci.201907.043
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We introduce and develop a method that demonstrates that the algorithmic information content of a system can be used as a steering handle in the dynamical phase space, thus affording an avenue for controlling and reprogramming systems. The method consists of applying a series of controlled interventions to a networked system while estimating how the algorithmic information content is affected. We demonstrate the method by reconstructing the phase space and their generative rules of some discrete dynamical systems (cellular automata) serving as controlled case studies. Next, the model-based interventional or causal calculus is evaluated and validated using (1) a huge large set of small graphs, (2) a number of larger networks with different topologies, and finally (3) biological networks derived from a widely studied and validated genetic network (E. coli) as well as on a significant number of differentiating (Th17) and differentiated human cells from a curated biological network data.
引用
收藏
页码:1160 / +
页数:41
相关论文
共 50 条
  • [1] Algorithmic calculus for Lie determining systems
    Lisle, Ian G.
    Huang, S. -L. Tracy
    JOURNAL OF SYMBOLIC COMPUTATION, 2017, 79 : 482 - 498
  • [2] Justifying Additive Noise Model-Based Causal Discovery via Algorithmic Information Theory
    Janzing, Dominik
    Steudel, Bastian
    OPEN SYSTEMS & INFORMATION DYNAMICS, 2010, 17 (02): : 189 - 212
  • [3] Causal discovery with prior information
    O'Donnell, R. T.
    Nicholson, A. E.
    Han, B.
    Korb, K. B.
    Alam, M. J.
    Hope, L. R.
    AI 2006: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2006, 4304 : 1162 - +
  • [4] Causal Discovery with Hidden Confounders using the Algorithmic Markov Condition
    Kaltenpoth, David
    Vreeken, Jilles
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2023, 216 : 1016 - 1026
  • [5] Causal Discovery Based on Healthcare Information
    Yang, Jing
    An, Ning
    Alterovitz, Gil
    Li, Lian
    Wang, Aiguo
    2013 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2013,
  • [6] The (Most) Algorithmic Animal: Unknowable Causal Structures in the Information Age
    Bryson, Joanna J.
    JOURNAL FOR THE COGNITIVE SCIENCE OF RELIGION, 2022, 8 (02) : 115 - 121
  • [7] Dynamics of information systems: Algorithmic approaches
    1600, Springer New York, 233 Spring Street, New York, NY 10013-1578, United States (51):
  • [8] Algorithmic foundations of geographic information systems
    Little, JJ
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2000, 14 (05) : 497 - 498
  • [9] Algorithmic methods of variational calculus
    Dambrauskas, A.
    Rinkevicius, V.
    ELEKTRONIKA IR ELEKTROTECHNIKA, 2007, (06) : 75 - 78
  • [10] An Algorithmic Toolbox for Network Calculus
    Anne Bouillard
    Éric Thierry
    Discrete Event Dynamic Systems, 2008, 18 : 3 - 49