Unit elements in the path algebra of an acyclic quiver

被引:1
|
作者
Karthika, S. [1 ]
Viji, M. [1 ]
机构
[1] St Thomas Coll, Dept Math, Trichur 680001, Kerala, India
来源
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS | 2021年 / 52卷 / 01期
关键词
Acyclic quiver; Path algebra; Unit element;
D O I
10.1007/s13226-021-00069-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the algebraic properties of a particular non- commutative algebra, the path algebra, associated with a quiver. Quiver was initially introduced by Peter Gabriel. In this paper, we obtain a characterization for the invertibility of an element in the path algebra of an acyclic quiver. The study is an extension of the invertibility condition in a unique path quiver to acyclic quivers.
引用
收藏
页码:138 / 140
页数:3
相关论文
共 50 条
  • [1] Unit elements in the path algebra of an acyclic quiver
    S. Karthika
    M. Viji
    Indian Journal of Pure and Applied Mathematics, 2021, 52 : 138 - 140
  • [2] Subalgebra Depths Within the Path Algebra of an Acyclic Quiver
    Kadison, Lars
    Young, Christopher J.
    ALGEBRA, GEOMETRY AND MATHEMATICAL PHYSICS (AGMP), 2014, 85 : 83 - 97
  • [3] Stratifying systems over the hereditary path algebra with quiver A(p,q)
    Cadavid, Paula
    Marcos, Eduardo do N.
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2016, 10 (01): : 73 - 90
  • [4] On the quiver Grassmannian in the acyclic case
    Caldero, Philippe
    Reineke, Markus
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2008, 212 (11) : 2369 - 2380
  • [5] On the quiver of the descent algebra
    Saliola, Franco V.
    JOURNAL OF ALGEBRA, 2008, 320 (11) : 3866 - 3894
  • [6] QUIVER GRASSMANNIANS, QUIVER VARIETIES AND THE PREPROJECTIVE ALGEBRA
    Savage, Alistair
    Tingley, Peter
    PACIFIC JOURNAL OF MATHEMATICS, 2011, 251 (02) : 393 - 429
  • [7] The regular algebra of a quiver
    Ara, Pere
    Brustenga, Miquel
    JOURNAL OF ALGEBRA, 2007, 309 (01) : 207 - 235
  • [8] THE NUMBER OF ARROWS IN THE QUIVER OF TILTING MODULES OVER A PATH ALGEBRA OF DYNKIN TYPE
    Kase, Ryoichi
    TSUKUBA JOURNAL OF MATHEMATICS, 2013, 37 (01) : 153 - 177
  • [9] The graded preprojective algebra of a quiver
    Kleiner, M
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2004, 36 : 13 - 22
  • [10] SIMPLICITY OF THE LIE ALGEBRA OF SKEW SYMMETRIC ELEMENTS OF A LEAVITT PATH ALGEBRA
    Alahmedi, Adel
    Alsulami, Hamed
    COMMUNICATIONS IN ALGEBRA, 2016, 44 (07) : 3182 - 3190