PARTIAL SUMS OF THE FIBONACCI SEQUENCE

被引:0
|
作者
Hung Viet Chu [1 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61820 USA
来源
FIBONACCI QUARTERLY | 2021年 / 59卷 / 02期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (F-n)(n >= 1) be the Fibonacci sequence. Define P(F-n) = (Sigma(n)(i=1) F-i)(n >= 1); that is, the function P gives the sequence of partial sums of (F-n). In this paper, we first give an identity involving P-k (F-n), which is the resulting sequence by applying P to (F-n) k times. Second, we provide a combinatorial interpretation of the numbers in P-k (F-n).
引用
收藏
页码:132 / 135
页数:4
相关论文
共 50 条
  • [1] SUMS RELATED TO THE FIBONACCI SEQUENCE
    Kinlaw, Paul
    Morris, Michael
    Thiagarajan, Samanthak
    FIBONACCI QUARTERLY, 2022, 60 (02): : 136 - 150
  • [2] Fibonacci Partial Sums Tricks
    Byrapuram, Nikhil
    Ge, Adam
    Ge, Selena
    Lee, Sylvia Zia
    Mandal, Rajarshi
    Redwine, Gordon
    Samanta, Soham
    Wu, Daniel
    Xu, Danyang
    Zhao, Ray
    Khovanova, Tanya
    arXiv,
  • [3] On the zeros of the partial sums of the Fibonacci zeta function
    G. Mora
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2023, 117
  • [4] Sums of the AB-Generalized Fibonacci Sequence
    Labendia, Mhelmar A.
    ARS COMBINATORIA, 2014, 113A : 119 - 128
  • [5] On the zeros of the partial sums of the Fibonacci zeta function
    Mora, G.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2023, 117 (04)
  • [6] On the partial finite sums of the reciprocals of the Fibonacci numbers
    Wang, Andrew Y. Z.
    Wen, Peibo
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015, : 1 - 13
  • [7] On the partial finite sums of the reciprocals of the Fibonacci numbers
    Andrew YZ Wang
    Peibo Wen
    Journal of Inequalities and Applications, 2015
  • [8] Iterated Partial Sums of the k-Fibonacci Sequences
    Falcon, Sergio
    Plaza, Angel
    AXIOMS, 2022, 11 (10)
  • [9] The reciprocal sums of even and odd terms in the Fibonacci sequence
    Andrew YZ Wang
    Fan Zhang
    Journal of Inequalities and Applications, 2015
  • [10] The reciprocal sums of even and odd terms in the Fibonacci sequence
    Wang, Andrew Y. Z.
    Zhang, Fan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015, : 1 - 13