Impact of Feature Selection on EEG Based Motor Imagery

被引:5
|
作者
Sahu, Mridu [1 ]
Shukla, Sneha [1 ]
机构
[1] Natl Inst Technol, Dept IT, Raipur, Chhattisgarh, India
关键词
Motor imagery; Electroencephalography; Short time Fourier transform; Wavelet; Feature selection; BRAIN-COMPUTER INTERFACE; TIME FOURIER-TRANSFORM; FEATURE-EXTRACTION; WAVELET TRANSFORM; CHANNEL SELECTION; CLASSIFICATION;
D O I
10.1007/978-981-13-0586-3_73
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
An EEG based motor imagery translates the motor intention of any subject into control signal by classifying EEG data of different imagination tasks such as hand and feet movements. As indicated by study, it is found that there are almost around 1 in 50 individuals living with loss of motion roughly 5.4 million individuals. For this sort of inability, EEG based BCI for motor imagery of right hand and feet movement imagination is acquired and classified. Short time Fourier transform and wavelet features are extracted and classified with and without feature selection. Ranking method is used for feature selection. Both classification outcomes are comparatively analyzed and observed that there is an increment in classification accuracy when features are classified after feature selection.
引用
收藏
页码:749 / 762
页数:14
相关论文
共 50 条
  • [1] Artificial Bee Colony Based Feature Selection for Motor Imagery EEG Data
    Rakshit, Pratyusha
    Bhattacharyya, Saugat
    Konar, Amit
    Khasnobish, Anwesha
    Tibarewala, D. N.
    Janarthanan, R.
    PROCEEDINGS OF SEVENTH INTERNATIONAL CONFERENCE ON BIO-INSPIRED COMPUTING: THEORIES AND APPLICATIONS (BIC-TA 2012), VOL 2, 2013, 202 : 127 - +
  • [2] Impact of NSGA-II Objectives on EEG Feature Selection Related to Motor Imagery
    Leon, Miguel
    Parkkila, Christoffer
    Tidare, Jonatan
    Xiong, Ning
    Astrand, Elaine
    GECCO'20: PROCEEDINGS OF THE 2020 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2020, : 1134 - 1142
  • [3] Feature Selection for Motor Imagery EEG Classification Based on Firefly Algorithm and Learning Automata
    Liu, Aiming
    Chen, Kun
    Liu, Quan
    Ai, Qingsong
    Xie, Yi
    Chen, Anqi
    SENSORS, 2017, 17 (11):
  • [4] Feature subset and time segment selection for the classification of EEG data based motor imagery
    Wang, Jie
    Feng, Zuren
    Ren, Xiaodong
    Lu, Na
    Luo, Jing
    Sun, Lei
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2020, 61
  • [5] Discriminative Feature Selection-Based Motor Imagery Classification Using EEG Signal
    Molla, Md Khademul Islam
    Al Shiam, Abdullah
    Islam, Md Rabiul
    Tanaka, Toshihisa
    IEEE ACCESS, 2020, 8 : 98255 - 98265
  • [6] Discriminative Feature Selection-Based Motor Imagery Classification Using EEG Signal
    Molla, Md. Khademul Islam
    Shiam, Abdullah Al
    Islam, Md. Rabiul
    Tanaka, Toshihisa
    IEEE Access, 2020, 8 : 98255 - 98265
  • [7] EEG-based Motor Imagery Feature Extraction
    Liu, Yang
    Li, Niandiang
    Li, Yongxiang
    ADVANCES IN MECHATRONICS, AUTOMATION AND APPLIED INFORMATION TECHNOLOGIES, PTS 1 AND 2, 2014, 846-847 : 944 - 947
  • [8] Feature Extraction and Selection Methods for Motor Imagery EEG Signals : A Review
    Wankar, Rijuta, V
    Shah, Payal
    Sutar, Rajendra
    PROCEEDINGS OF 2017 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL (I2C2), 2017,
  • [9] Motor Imagery EEG Decoding Based on New Spatial-Frequency Feature and Hybrid Feature Selection Method
    Tang, Yuan
    Zhao, Zining
    Zhang, Shaorong
    Li, Zhi
    Mo, Yun
    Guo, Yan
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [10] A Bacterial Foraging Optimization and Learning Automata Based Feature Selection for Motor Imagery EEG Classification
    Pal, Monalisa
    Bhattacharyya, Saugat
    Roy, Shounak
    Konar, Amit
    Tibarewala, D. N.
    Janarthanan, R.
    2014 INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS (SPCOM), 2014,