A hybrid short-term load forecasting with a new data preprocessing framework

被引:52
|
作者
Ghayekhloo, M. [1 ]
Menhaj, M. B. [1 ,2 ]
Ghofrani, M. [3 ]
机构
[1] Islamic Azad Univ, Dept Elect & Comp Engn, Sci & Res Branch, Qazvin, Iran
[2] Amirkabir Univ Technol, Dept Elect Engn, Tehran, Iran
[3] Univ Washington, Sch STEM, Bothell, WA USA
关键词
Bayesian neural network; Correlation analysis; Data preprocessing; Forecasting; Input selection; Standardization; NEURAL-NETWORKS;
D O I
10.1016/j.epsr.2014.09.002
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a hybrid load forecasting framework with a new data preprocessing algorithm to enhance the accuracy of prediction. Bayesian neural network (BNN) is used to predict the load. A discrete wavelet transform (DWT) decomposes the load components into proper levels of resolution determined by an entropy-based criterion. Time series and regression analysis are used to select the best set of inputs among the input candidates. A correlation analysis together with a neural network provides an estimation of the predictions for the forecasting outputs. A standardization procedure is proposed to take into account the correlation estimations of the outputs with their associated input series. The preprocessing algorithm uses the input selection, wavelet decomposition and the proposed standardization to provide the most appropriate inputs for BNNs. Genetic Algorithm (GA) is then used to optimize the weighting coefficients of different forecast components and minimize the forecast error. The performance and accuracy of the proposed short-term load forecasting (STLF) method is evaluated using New England load data. Our results show a significant improvement in the forecast accuracy when compared to the existing state-of-the-art forecasting techniques. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:138 / 148
页数:11
相关论文
共 50 条
  • [1] A hybrid deep learning framework for short-term load forecasting with improved data cleansing and preprocessing techniques
    Iqbal, Muhammad Sajid
    Adnan, Muhammad
    Mohamed, Salah Eldeen Gasim
    Tariq, Muhammad
    Results in Engineering, 2024, 24
  • [2] A hybrid short-term load forecasting with a new input selection framework
    Ghofrani, M.
    Ghayekhloo, M.
    Arabali, A.
    Ghayekhloo, A.
    ENERGY, 2015, 81 : 777 - 786
  • [3] Short-term Load forecasting by a new hybrid model
    Guo, Hehong
    Du, Guiqing
    Wu, Liping
    Hu, Zhiqiang
    PROCEEDINGS OF THE 1ST INTERNATIONAL WORKSHOP ON CLOUD COMPUTING AND INFORMATION SECURITY (CCIS 2013), 2013, 52 : 370 - 374
  • [4] Hybrid Short-Term Load Forecasting using the Hadoop MapReduce Framework
    Deng, Buqing
    Wen, Yunfeng
    Yuan, Peng
    2020 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2020,
  • [5] A New Hybrid Model for Short-Term Electricity Load Forecasting
    Haq, Md Rashedul
    Ni, Zhen
    IEEE ACCESS, 2019, 7 : 125413 - 125423
  • [6] The new hybrid approaches to forecasting short-term electricity load
    Fan, Guo-Feng
    Liu, Yan-Rong
    Wei, Hui-Zhen
    Yu, Meng
    Li, Yin-He
    ELECTRIC POWER SYSTEMS RESEARCH, 2022, 213
  • [7] Short-term electricity load forecasting based on a novel data preprocessing system and data reconstruction strategy
    Meng, Yao
    Yun, Sining
    Zhao, Zeni
    Guo, Jiaxin
    Li, Xinhong
    Ye, Dongfu
    Jia, Lingyun
    Yang, Liu
    JOURNAL OF BUILDING ENGINEERING, 2023, 77
  • [8] An Ensemble Model based on Deep Learning and Data Preprocessing for Short-Term Electrical Load Forecasting
    Shen, Yamin
    Ma, Yuxuan
    Deng, Simin
    Huang, Chiou-Jye
    Kuo, Ping-Huan
    SUSTAINABILITY, 2021, 13 (04) : 1 - 21
  • [9] Data mining for short-term load forecasting
    Mori, H
    Kosemura, N
    Kondo, T
    Numa, K
    2002 IEEE POWER ENGINEERING SOCIETY WINTER MEETING, VOLS 1 AND 2, CONFERENCE PROCEEDINGS, 2002, : 623 - 624
  • [10] A Short-Term Household Load Forecasting Framework Using LSTM and Data Preparation
    Ageng, Derni
    Huang, Chin-Ya
    Cheng, Ray-Guang
    IEEE ACCESS, 2021, 9 : 167911 - 167919