An asymptotic expansion for a Black-Scholes type model

被引:3
|
作者
Lütkebohmert, E [1 ]
机构
[1] Univ Bonn, Inst Angew Math, Abt Stockast, D-53115 Bonn, Germany
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2004年 / 128卷 / 08期
关键词
Black-Scholes model; asymptotic expansion; Malliavin calculus; borel summability; small diffusion; Laplace method;
D O I
10.1016/j.bulsci.2004.02.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Black-Scholes model where we add a perturbation term Sigma(i) epsilon(i)sigma(i) to the model with diffusion coefficient sigma(0)(t). Then we derive an asymptotic expansion for the expected value of an European call option at time t. This is done by applying methods of Malliavin calculus. Borel summability of the derived asymptotic expansion is proven. (C) 2004 Elsevier SAS. All rights reserved.
引用
收藏
页码:661 / 685
页数:25
相关论文
共 50 条
  • [1] The relativistic Black-Scholes model
    Trzetrzelewski, Maciej
    EPL, 2017, 117 (03)
  • [2] PARAMETER ESTIMATION IN A BLACK-SCHOLES MODEL
    Bayram, Mustafa
    Orucova Buyukoz, Gulsen
    Partal, Tugcem
    THERMAL SCIENCE, 2018, 22 : S117 - S122
  • [3] The binomial Black-Scholes model and the Greeks
    Chung, SL
    Shackleton, M
    JOURNAL OF FUTURES MARKETS, 2002, 22 (02) : 143 - 153
  • [4] Black-Scholes' model and Bollinger bands
    Liu, Wei
    Huang, Xudong
    Zheng, Weian
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 371 (02) : 565 - 571
  • [5] Asymptotic Convergence Analysis and Error Estimate for Black-Scholes Model of Option Pricing
    He, Juan
    Tu, Wei
    Zhang, Aiqing
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [6] Limitations and modifications of Black-Scholes model
    Jiang, LS
    Ren, XM
    DIFFERENTIAL EQUATIONS & ASYMPTOTIC THEORY MATHEMATICAL PHYSICS, 2004, 2 : 295 - 309
  • [7] Black-Scholes options pricing model
    Slacálek, J
    FINANCE A UVER, 2000, 50 (02): : 78 - 96
  • [8] Black-Scholes model under subordination
    Stanislavsky, AA
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 318 (3-4) : 469 - 474
  • [9] Option Hedging in Black-Scholes Model
    Malek, Jiri
    FINANCIAL MANAGEMENT OF FIRMS AND FINANCIAL INSTITUTIONS: 9TH INTERNATIONAL SCIENTIFIC CONFERENCE PROCEEDINGS, PTS I-III, 2013, : 492 - 497
  • [10] The Peculiar Logic of the Black-Scholes Model
    Weatherall, James Owen
    PHILOSOPHY OF SCIENCE, 2018, 85 (05) : 1152 - 1163