Corticosteroid inhibits differentiation of palmar fibromatosis-derived stem cells (FSCs) through downregulation of transforming growth factor-β1 (TGF-β1)

被引:7
|
作者
Wan, Jung-Pan [1 ,2 ]
Yu, Hsiang-Hsuan Michael [3 ]
Chiang, En-Rung [1 ,2 ]
Wan, Jir-You [1 ,2 ]
Chou, Po-Hsin [1 ,2 ]
Hung, Shih-Chieh [1 ,2 ,4 ]
机构
[1] Natl Yang Ming Univ, Sch Med, Dept Surg, Taipei, Taiwan
[2] Taipei Vet Gen Hosp, Dept Orthoped & Traumatol, Taipei, Taiwan
[3] H Lee Moffitt Canc Ctr & Res Inst, Dept Radiat Oncol, Tampa, FL USA
[4] China Med Univ Hosp, Integrat Stem Cell Ctr, Taichung, Taiwan
来源
PLOS ONE | 2018年 / 13卷 / 06期
关键词
GROWTH-FACTOR-BETA; DUPUYTRENS-DISEASE; TRIAMCINOLONE ACETONIDE; RNA INTERFERENCE; IN-VITRO; EXPRESSION; DEXAMETHASONE; FIBROBLASTS; CONTRACTURE; INJECTION;
D O I
10.1371/journal.pone.0198326
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Treatment for musculoskeletal fibromatosis remains challenging. Surgical excision for fibromatosis is the standard therapy but recurrence remains high. Corticosteroids, an antifibrogenic compound, have been used to treat early stage palmar fibromatosis, but the mechanism is unknown. We investigated the inhibitory mechanism effect of corticosteroids in the murine model of fibromatosis nodule as well as in cultured FSCs. Quantitative reverse transcription/polymerase chain reaction (PCR) analysis and immunofluorescence (IF) staining for markers of myofibroblasts (alpha-smooth muscle actin and type III collagen) were used to examine the effect of dexamethasone on myofibroblasic differentiation of FSCs both in vitro and in vivo. Transforming growth factor-beta 1 (TGF-beta 1) signaling and its downstream targets were examined using western blot analysis. TGF-beta 1 expression in FSCs before and after dexamethasone treatment was compared. In addition, inhibition of TGF-beta 1 expression was examined using RNA interference (RNAi) on FSCs, both in vitro and in vivo. Treating FSCs with dexamethasone inhibited FSCs' myofibroblastic differentiation in vitro. Treating FSCs with dexamethasone before or after implantation further inhibited formation of fibromatosis nodules. Dexamethasone suppressed expression of TGF-beta 1 and pSmad2/3 by FSCs in vitro. TGF-beta 1 knockdown FSCs showed reducing myofibroblastic differentiation both in vitro and in vivo. Finally, addition of TGF-beta 1 abolished dexamethasone-mediated inhibition of myofibroblastic differentiation. Dexamethasone inhibits the myofibroblastic differentiated potential of FSCs both in vitro and in vivo through inhibition of TGF-beta 1 expression in FSCs. TGF-beta 1 plays a key role in myofibroblastic differentiation.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Selenate inhibits adipogenesis through induction of transforming growth factor-β1 (TGF-β1) signaling
    Kim, Choon Young
    Kim, Gyo-Nam
    Wiacek, Julie L.
    Chen, Chih-Yu
    Kim, Kee-Hong
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2012, 426 (04) : 551 - 557
  • [2] Bone substitutes as carriers for transforming growth factor-β1 (TGF-β1)
    Gille, J
    Dorn, B
    Kekow, J
    Bruns, J
    Behrens, P
    INTERNATIONAL ORTHOPAEDICS, 2002, 26 (04) : 203 - 206
  • [3] Bone substitutes as carriers for transforming growth factor-β1 (TGF-β1)
    J. Gille
    B. Dorn
    J. Kekow
    J. Bruns
    P. Behrens
    International Orthopaedics, 2002, 26 : 203 - 206
  • [4] Autologous serum enhances cardiomyocyte differentiation of rat bone marrow mesenchymal stem cells in the presence of transforming growth factor-β1 (TGF-β1)
    Rouhi, Leila
    Kajbafzadeh, Abdol Mohammad
    Modaresi, Mehrdad
    Shariati, Mehrdad
    Hamrahi, Dariush
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL, 2013, 49 (04) : 287 - 294
  • [5] Autologous serum enhances cardiomyocyte differentiation of rat bone marrow mesenchymal stem cells in the presence of transforming growth factor-β1 (TGF-β1)
    Leila Rouhi
    Abdol Mohammad Kajbafzadeh
    Mehrdad Modaresi
    Mehrdad Shariati
    Dariush Hamrahi
    In Vitro Cellular & Developmental Biology - Animal, 2013, 49 : 287 - 294
  • [6] Tumor necrosis factor-α and transforming growth factor-β1 facilitate differentiation and proliferation of tendon-derived stem cells in vitro
    Han, Peilin
    Cui, Qingbo
    Yang, Shulong
    Wang, Hao
    Gao, Peng
    Li, Zhaozhu
    BIOTECHNOLOGY LETTERS, 2017, 39 (05) : 711 - 719
  • [7] Tumor necrosis factor-α and transforming growth factor-β1 facilitate differentiation and proliferation of tendon-derived stem cells in vitro
    Peilin Han
    Qingbo Cui
    Shulong Yang
    Hao Wang
    Peng Gao
    Zhaozhu Li
    Biotechnology Letters, 2017, 39 : 711 - 719
  • [8] Urine but not plasma transforming growth factor-β1 (TGF-β1) correlates with renal TGF-β1 expression in the diabetic rat
    Lane, PH
    Leser, S
    Babushkina-Patz, N
    DIABETES, 1999, 48 : A141 - A141
  • [9] LEFTY INHIBITS TRANSFORMING GROWTH FACTOR-β1 (TGF-β1) MEDIATED EPITHELIAL TO MESENCHYMAL TRANSDIFFERENCIATION (EMT) IN RAT TUBULAR EPITHELIAL CELLS
    Sachchithananthan, M.
    Tesch, G. H.
    Hurst, L.
    Nikolic-Paterson, D. J.
    NEPHROLOGY, 2007, 12 : A48 - A48
  • [10] Abnormal regulation of macrophage-derived transforming growth factor-β1 (TGF-β1) production in Huntington disease
    Di Pardo, A.
    Alberti, S.
    Concetti, F.
    Elifani, F.
    Martino, T.
    Busceti, C. L.
    Battaglia, G.
    Maglione, V.
    Amico, E.
    Squitieri, F.
    NEUROTHERAPEUTICS, 2013, 10 (01) : 176 - 177