Unstable manifold computations for the two-dimensional plane Poiseuille flow

被引:2
|
作者
Casas, PS
Jorba, A
机构
[1] Univ Politecn Cataluna, Dept Matemat Aplicada 1, E-08028 Barcelona, Spain
[2] Univ Barcelona, Dept Matemat Aplicada & Anal, E-08007 Barcelona, Spain
关键词
incompressible Navier-Stokes equation; direct numerical simulation; nonlinear dynamical systems;
D O I
10.1007/s00162-004-0138-0
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We follow the unstable manifold of periodic and quasi-periodic solutions in time for the Poiseuille problem, using two formulations: holding a constant flux or mean pressure gradient. By means of a numerical integrator of the Navier-Stokes equations, we let the fluid evolve from an initially perturbed unstable solution until the fluid reaches an attracting state. Thus, we detect several connections among different configurations of the flow such as laminar, periodic, quasi-periodic with two or three basic frequencies, and more complex sets that we have not been able to classify. These connections make possible the location of new families of solutions, usually hard to find by means of numerical continuation of curves, and show the richness of the dynamics of the Poiseuille flow.
引用
收藏
页码:285 / 299
页数:15
相关论文
共 50 条
  • [1] Unstable manifold computations for the two-dimensional plane Poiseuille flow
    Pablo S. Casas
    Àngel Jorba
    Theoretical and Computational Fluid Dynamics, 2004, 18 : 285 - 299
  • [2] Unstable manifolds computation for the two-dimensional plane Poiseuille flow
    Casas, PS
    Jorba, A
    EQUADIFF 2003: INTERNATIONAL CONFERENCE ON DIFFERENTIAL EQUATIONS, 2005, : 1045 - 1047
  • [3] Subcritical transitional flow in two-dimensional plane Poiseuille flow
    Huang, Z.
    Gao, R.
    Gao, Y. Y.
    Xi, G.
    JOURNAL OF FLUID MECHANICS, 2024, 994
  • [4] TRAVELING WAVES IN TWO-DIMENSIONAL PLANE POISEUILLE FLOW
    Smith, Warren R.
    Wissink, Jan G.
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2015, 75 (05) : 2147 - 2169
  • [5] TWO-DIMENSIONAL POISEUILLE FLOW
    ECKMANN, JP
    RUELLE, D
    PHYSICA SCRIPTA, 1985, T9 : 153 - 154
  • [6] COMPUTER-SIMULATION OF TWO-DIMENSIONAL WAVE SETS IN THE PLANE POISEUILLE FLOW
    BESTEK, H
    FASEL, H
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1985, 65 (04): : T182 - T185
  • [7] Optimal mixing in two-dimensional plane Poiseuille flow at finite Peclet number
    Foures, D. P. G.
    Caulfield, C. P.
    Schmid, P. J.
    JOURNAL OF FLUID MECHANICS, 2014, 748 : 241 - 277
  • [8] Two-dimensional nonlinear plane Poiseuille-Couette flow homotopy revisited
    Ehrenstein, Uwe
    Nagata, Masato
    Rincon, Francois
    PHYSICS OF FLUIDS, 2008, 20 (06)
  • [9] BIFURCATIONS AND BURSTING IN TWO-DIMENSIONAL POISEUILLE FLOW
    JIMENEZ, J
    PHYSICS OF FLUIDS, 1987, 30 (12) : 3644 - 3646
  • [10] Optimal mixing in two-dimensional plane Poiseuille flow at finite Péclet number
    Caulfield, C.P. (c.p.caulfield@bpi.cam.ac.uk), 1600, Cambridge University Press (748):