Microstructure and mechanical properties of ultra-fine grained MoNbTaTiV refractory high-entropy alloy fabricated by spark plasma sintering

被引:111
|
作者
Liu, Qing [1 ]
Wang, Guofeng [1 ]
Sui, Xiaochong [1 ]
Liu, Yongkang [1 ]
Li, Xiao [1 ]
Yang, Jianlei [1 ]
机构
[1] Harbin Inst Technol, Natl Key Lab Precis Hot Proc Met, Harbin 150006, Heilongjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Refractory high-entropy alloy; Ultra-fine grain; Mechanical alloying; Spark plasma sintering; Mechanical properties; WEAR BEHAVIOR; ENHANCEMENT; TEMPERATURE; COMPOSITES; RESISTANCE; EVOLUTION; FILM;
D O I
10.1016/j.jmst.2019.07.013
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The MoNbTaTiV refractory high-entropy alloy (RHEA) with ultra-fine grains and homogeneous microstructure was successfully fabricated by mechanical alloying (MA) and spark plasma sintering (SPS). The microstructural evolutions, mechanical properties and strengthening mechanisms of the alloys were systematically investigated. The nanocrystalline mechanically alloyed powders with simple bodycentered cubic (BCC) phase were obtained after 40 h MA process. Afterward, the powders were sintered using SPS in the temperature range from 1500 degrees C to 1700 degrees C. The bulk alloys were consisted of submicron scale BCC matrix and face-centered cubic (FCC) precipitation phases. The bulk alloy sintered at 1600 degrees C had an average grain size of 0.58 mu m and an FCC precipitation phase of 0.18 mu m, exhibiting outstanding micro-hardness of 542 HV, compressive yield strength of 2208 MPa, fracture strength of 3238 MPa and acceptable plastic strain of 24.9% at room temperature. The enhanced mechanical properties of the MoNbTaTiV RHEA fabricated by MA and SPS were mainly attributed to the grain boundary strengthening and the interstitial solid solution strengthening. It is expectable that the MA and SPS processes are the promising methods to synthesize ultra-fine grains and homogenous microstructural RHEA with excellent mechanical properties. (C) 2019 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
引用
收藏
页码:2600 / 2607
页数:8
相关论文
共 50 条
  • [1] Microstructure and mechanical properties of ultra-fine grained MoNbTaTiV refractory high-entropy alloy fabricated by spark plasma sintering
    Qing Liu
    Guofeng Wang
    Xiaochong Sui
    Yongkang Liu
    Xiao Li
    Jianlei Yang
    JournalofMaterialsScience&Technology, 2019, 35 (11) : 2600 - 2607
  • [2] Microstructure and mechanical properties of MoNbTaW refractory high-entropy alloy prepared by spark plasma sintering
    Jiahao Liu
    Xinming Zhao
    Shaoming Zhang
    Yanwei Sheng
    Qiang Hu
    Journal of Materials Research, 2023, 38 : 484 - 496
  • [3] Microstructure and mechanical properties of MoNbTaW refractory high-entropy alloy prepared by spark plasma sintering
    Liu, Jiahao
    Zhao, Xinming
    Zhang, Shaoming
    Sheng, Yanwei
    Hu, Qiang
    JOURNAL OF MATERIALS RESEARCH, 2023, 38 (02) : 484 - 496
  • [4] Dual phase equal-atomic NbTaTiZr high-entropy alloy with ultra-fine grain and excellent mechanical properties fabricated by spark plasma sintering
    Tao Xiang
    Zeyun Cai
    Peng Du
    Kun Li
    Zongwei Zhang
    Guoqiang Xie
    Journal of Materials Science & Technology, 2021, 90 (31) : 150 - 158
  • [5] Dual phase equal-atomic NbTaTiZr high-entropy alloy with ultra-fine grain and excellent mechanical properties fabricated by spark plasma sintering
    Xiang, Tao
    Cai, Zeyun
    Du, Peng
    Li, Kun
    Zhang, Zongwei
    Xie, Guoqiang
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2021, 90 : 150 - 158
  • [6] Microstructure and Mechanical Properties of Nanostructured CoCrFeMoTi High-Entropy Alloy Fabricated by Mechanical Alloying and Spark Plasma Sintering
    Atia Torabizadeh
    Mohammad Reza Toroghinejad
    Fathallah Karimzadeh
    Jef Vleugels
    Hamed Ravash
    Pasquale Cavaliere
    Journal of Materials Engineering and Performance, 2019, 28 : 7710 - 7725
  • [7] Microstructure and Mechanical Properties of Nanostructured CoCrFeMoTi High-Entropy Alloy Fabricated by Mechanical Alloying and Spark Plasma Sintering
    Torabizadeh, Atia
    Toroghinejad, Mohammad Reza
    Karimzadeh, Fathallah
    Vleugels, Jef
    Ravash, Hamed
    Cavaliere, Pasquale
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2019, 28 (12) : 7710 - 7725
  • [8] Microstructure and mechanical properties of the TiZrNbMoTa refractory high-entropy alloy produced by mechanical alloying and spark plasma sintering
    Zhu, Chenglong
    Li, Zhanjiang
    Hong, Chunfu
    Dai, Pinqiang
    Chen, Junfeng
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2020, 93
  • [9] Microstructure and properties of ultrafine-grained AlCoCrFeNi2.1 high-entropy alloy fabricated by mechanical alloying and spark plasma sintering
    Fu, Bin
    Ke, Yu-jiao
    Peng, Chong
    Li, Chen-jing
    Qiao, Ze
    Liu, En-shuo
    Liu, Hao-ran
    Xu, Zhe-feng
    Matsugi, Kazuhiro
    MATERIALS TODAY COMMUNICATIONS, 2025, 43
  • [10] Microstructure and mechanical properties of CoCrNiCuX high-entropy alloys fabricated by spark plasma sintering
    Luo, Wenqi
    Zou, Qin
    Li, Yanguo
    Ye, Xihui
    Yang, Xiaowei
    Song, Jintao
    Luo, Yongan
    INTERNATIONAL JOURNAL OF MATERIALS RESEARCH, 2022, 113 (10) : 911 - 919