Missing responses at random in functional single index model for time series data

被引:13
|
作者
Ling, Nengxiang [1 ]
Cheng, Lilei [1 ]
Vieu, Philippe [2 ]
Ding, Hui [3 ]
机构
[1] Hefei Univ Technol, Sch Math, Hefei 230009, Peoples R China
[2] Univ Paul Sabatier, Inst Math, Toulouse, France
[3] Nanjing Univ Finance & Econ, Sch Econ, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
Functional single index model; Uniform almost complete convergence rate; Asymptotic normality; Strong mixing dependence; Missing responses at random; CONDITIONAL DENSITY-ESTIMATION; ASYMPTOTIC NORMALITY; REGRESSION;
D O I
10.1007/s00362-021-01251-2
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we first investigate the estimation of the functional single index regression model with missing responses at random for strong mixing time series data. More precisely, the uniform almost complete convergence rate and asymptotic normality of the estimator are obtained respectively under some general conditions. Then, some simulation studies are carried out to show the finite sample performances of the estimator. Finally, a real data analysis about the sea surface temperature is used to illustrate the effectiveness of our methodology.
引用
收藏
页码:665 / 692
页数:28
相关论文
共 50 条
  • [1] Missing responses at random in functional single index model for time series data
    Nengxiang Ling
    Lilei Cheng
    Philippe Vieu
    Hui Ding
    Statistical Papers, 2022, 63 : 665 - 692
  • [2] Partially linear single-index model with missing responses at random
    Lai, Peng
    Wang, Qihua
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (02) : 1047 - 1058
  • [3] kNN estimators for time series prediction: a functional partial linear single index model with missing responses and error-prone covariates
    Meng, Shuyu
    Huang, Zhensheng
    Ling, Nengxiang
    COMPUTATIONAL STATISTICS, 2025,
  • [4] Single Index Regression Model for Functional Quasi-Associated Time Series Data
    Bouzebda, Salim
    Laksaci, Ali
    Mohammedi, Mustapha
    REVSTAT-STATISTICAL JOURNAL, 2022, 20 (05) : 605 - 631
  • [5] A monotone single index model for missing-at-random longitudinal proportion data
    Acharyya, Satwik
    Pati, Debdeep
    Sun, Shumei
    Bandyopadhyay, Dipankar
    JOURNAL OF APPLIED STATISTICS, 2024, 51 (06) : 1023 - 1040
  • [6] ASYMPTOTIC PROPERTIES OF THE SEMI-PARAMETRIC ESTIMATORS OF THE CONDITIONAL DENSITY FOR FUNCTIONAL DATA IN THE SINGLE INDEX MODEL WITH MISSING DATA AT RANDOM
    Mekki, Sanaa Dounya
    Kadiri, Nadia
    Rabhi, Abbes
    STATISTICA, 2021, 81 (04) : 399 - 422
  • [7] Robust estimation of single index models with responses missing at random
    Ash Abebe
    Huybrechts F. Bindele
    Masego Otlaadisa
    Boikanyo Makubate
    Statistical Papers, 2021, 62 : 2195 - 2225
  • [8] Robust estimation of single index models with responses missing at random
    Abebe, Ash
    Bindele, Huybrechts F.
    Otlaadisa, Masego
    Makubate, Boikanyo
    STATISTICAL PAPERS, 2021, 62 (05) : 2195 - 2225
  • [9] Asymptotic normality of conditional density estimation in the single index model for functional time series data
    Ling, Nengxiang
    Xu, Qian
    STATISTICS & PROBABILITY LETTERS, 2012, 82 (12) : 2235 - 2243
  • [10] Estimation of single index model with missing response at random
    Wang, Yanhua
    Shen, Junshan
    He, Shuyuan
    Wang, Qihua
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (07) : 1671 - 1690