SMOOTHING PROPERTIES OF BILINEAR OPERATORS AND LEIBNIZ-TYPE RULES IN LEBESGUE AND MIXED LEBESGUE SPACES

被引:52
|
作者
Hart, Jarod [1 ]
Torres, Rodolfo H. [2 ]
Wu, Xinfeng [2 ,3 ]
机构
[1] Univ Kansas, Higuchi Biosci Ctr, Lawrence, KS 66047 USA
[2] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
[3] China Univ Min & Technol, Dept Math, Beijing 100083, Peoples R China
关键词
Bilinear operators; multipliers; maximal function; smoothing properties; fractional derivatives; Leibniz rule; mixed Lebesgue spaces; WEIGHTED NORM INEQUALITIES; PSEUDODIFFERENTIAL-OPERATORS; VALUED INEQUALITIES; SINGULAR-INTEGRALS; SYMBOLIC-CALCULUS; HORMANDER CLASSES; TRIEBEL-LIZORKIN; DECOMPOSITION; BMO;
D O I
10.1090/tran/7312
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that bilinear fractional integral operators and similar multipliers are smoothing in the sense that they improve the regularity of functions. We also treat bilinear singular multiplier operators which preserve regularity and obtain several Leibniz-type rules in the context of Lebesgue and mixed Lebesgue spaces.
引用
收藏
页码:8581 / 8612
页数:32
相关论文
共 50 条
  • [1] Weighted Fractional Leibniz-Type Rules for Bilinear Multiplier Operators
    Joshua Brummer
    Virginia Naibo
    Potential Analysis, 2019, 51 : 71 - 99
  • [2] Weighted Fractional Leibniz-Type Rules for Bilinear Multiplier Operators
    Brummer, Joshua
    Naibo, Virginia
    POTENTIAL ANALYSIS, 2019, 51 (01) : 71 - 99
  • [3] Leibniz-Type Rules for Bilinear and Biparameter Fourier Multiplier Operators with Applications
    Yang, Jiexing
    Liu, Zongguang
    Wu, Xinfeng
    POTENTIAL ANALYSIS, 2021, 55 (02) : 189 - 209
  • [4] Leibniz-Type Rules for Bilinear Fourier Multiplier Operators with Besov Regularity
    Liu, Zongguang
    Wu, Xinfeng
    Yang, Jiexing
    RESULTS IN MATHEMATICS, 2022, 77 (01)
  • [5] Leibniz-Type Rules for Bilinear Fourier Multiplier Operators with Besov Regularity
    Zongguang Liu
    Xinfeng Wu
    Jiexing Yang
    Results in Mathematics, 2022, 77
  • [6] Erratum: Weighted Fractional Leibniz-type Rules for Bilinear Multiplier Operators
    Joshua Brummer
    Virginia Naibo
    Potential Analysis, 2024, 60 : 917 - 920
  • [7] Leibniz-Type Rules for Bilinear and Biparameter Fourier Multiplier Operators with Applications
    Jiexing Yang
    Zongguang Liu
    Xinfeng Wu
    Potential Analysis, 2021, 55 : 189 - 209
  • [8] Bilinear Sobolev–Poincaré Inequalities and Leibniz-Type Rules
    Frédéric Bernicot
    Diego Maldonado
    Kabe Moen
    Virginia Naibo
    The Journal of Geometric Analysis, 2014, 24 : 1144 - 1180
  • [9] Weighted Leibniz-type rules for bilinear flag multipliers
    Yang, Jiexing
    Liu, Zongguang
    Wu, Xinfeng
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2021, 15 (03)
  • [10] Weighted Leibniz-type rules for bilinear flag multipliers
    Jiexing Yang
    Zongguang Liu
    Xinfeng Wu
    Banach Journal of Mathematical Analysis, 2021, 15