MoS2 quantum dots embedded in g-C3N4 frameworks: A hybrid 0D-2D heterojunction as an efficient visible-light driven photocatalyst

被引:57
|
作者
Shi, Lang [1 ,4 ]
He, Zhen [1 ,2 ,3 ]
Liu, Suqin [1 ,2 ,3 ]
机构
[1] Cent S Univ, Coll Chem & Chem Engn, Changsha 410083, Hunan, Peoples R China
[2] Cent S Univ, Hunan Prov Key Lab Chem Power Sources, Changsha 410083, Hunan, Peoples R China
[3] Cent S Univ, Hunan Prov Key Lab Efficient & Clean Utilizat Man, Changsha 410083, Hunan, Peoples R China
[4] Cent S Univ, Innovat Base Energy & Chem Mat Grad Students Trai, Changsha 410083, Hunan, Peoples R China
关键词
Photocatalysis; MoS2 quantum dots; g-C3N4; Type II heterojunction; Visible light; GRAPHITIC CARBON NITRIDE; HYDROGEN EVOLUTION; ARTIFICIAL PHOTOSYNTHESIS; FACILE SYNTHESIS; Z-SCHEME; DEGRADATION; PERFORMANCE; NANOSHEETS; COMPOSITE; GRAPHENE;
D O I
10.1016/j.apsusc.2018.06.132
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Zero-dimensional (OD) quantum dots (QDs)/two-dimensional (2D) nanosheets heterojunctions have attracted significant attention due to their high charge mobility and effective charge carrier separation. Herein, a novel MoS2 QDs/graphitic carbon nitride (MoS2 QDs/g-C3N4) heterojunction composite with multiple unique advantages over the traditional MoS2 nanoparticles/g-C3N4 composites has been prepared by a facile polymerization method. The obtained MoS2 QDs/g-C3N4 composite exhibits superior visible-light-driven photocatalytic performance toward the photodegradation of organic pollutants and possesses a different catalytic degradation mechanism compared with the pure g-C3N4. The radical species trapping experiments and ESR measurements indicate that the (OH)-O-center dot radical is one of the major active species generated by the MoS2 QDs/g-C3N4 composite, whereas the (OH)-O-center dot radical only plays a minor role in the photodegradation processes catalyzed by pure g-C3N4. A type-II staggered band alignment is observed in the MoS2 QDs/g-C3N4 composite, which accounts for its efficient separation of photo-induced charge carriers and formation of (OH)-O-center dot radicals. The superior visible-lightdriven photocatalytic performance could be attributed to the strong coupling and band alignment between the MoS2 QDs and g-C3N4 nanosheets, leading to an enhanced efficiency for the generation and separation of the photo-induced charge carriers. This study provides new insights into the design and fabrication of novel g-C3N4 based hybrid photocatalysts with reasonable electronic structures for photochemical reactions.
引用
收藏
页码:30 / 40
页数:11
相关论文
共 50 条
  • [1] Acetylene black quantum dots as a bridge for few-layer g-C3N4/MoS2 nanosheet architecture: 0D-2D heterojunction as an efficient visible-light-driven photocatalyst
    Wang, Qian
    Chen, Changzhao
    Zhu, Shiwang
    Ni, Xiao
    Li, Zhe
    RESEARCH ON CHEMICAL INTERMEDIATES, 2019, 45 (10) : 4975 - 4993
  • [2] Acetylene black quantum dots as a bridge for few-layer g-C3N4/MoS2 nanosheet architecture: 0D–2D heterojunction as an efficient visible-light-driven photocatalyst
    Qian Wang
    Changzhao Chen
    Shiwang Zhu
    Xiao Ni
    Zhe Li
    Research on Chemical Intermediates, 2019, 45 : 4975 - 4993
  • [3] AgBiS2 quantum Dots-embedded g-C3N4 heterojunction for efficient visible-light photocatalytic sterilization
    Wen, Shengwu
    Zhao, Ying
    Zhao, Junqi
    Zhong, Qing
    Tan, Shaozao
    APPLIED SURFACE SCIENCE, 2025, 687
  • [4] Construction of 2D g-C3N4/MoS2 heterojunction photocatalyst for enhanced degradation of pollution under visible light
    Zhong, Zijun
    Xu, Ruopeng
    He, Huijuan
    Zhuang, Qiuna
    Huang, Langhuan
    DESALINATION AND WATER TREATMENT, 2019, 137 : 234 - 242
  • [5] 0D/2D Z-scheme heterojunctions of g-C3N4 quantum dots/ZnO nanosheets as a highly efficient visible-light photocatalyst
    Fang, Qian
    Li, Bo
    Li, Yuan-Yuan
    Huang, Wei-Qing
    Peng, Wei
    Fan, Xiaoxing
    Huang, Gui-Fang
    ADVANCED POWDER TECHNOLOGY, 2019, 30 (08) : 1576 - 1583
  • [6] Synthesis of MoS2/g-C3N4 nanosheets as 2D heterojunction photocatalysts with enhanced visible light activity
    Li, Juan
    Liu, Enzhou
    Ma, Yongning
    Hu, Xiaoyun
    Wan, Jun
    Sun, Lin
    Fan, Jun
    APPLIED SURFACE SCIENCE, 2016, 364 : 694 - 702
  • [7] Hybrid of AgInZnS and MoS2 as efficient visible-light driven photocatalyst for hydrogen production
    Huang, Ting
    Chen, Wei
    Liu, Tian-Yu
    Hao, Qing-Li
    Liu, Xiao-Heng
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (17) : 12254 - 12261
  • [8] 2D/2d heterojunction of MoS2/g-C3N4 nanoflowers for enhanced visible-light-driven photocatalytic and electrochemical degradation of organic pollutants
    Monga, Divya
    Ilager, Davalasab
    Shetti, Nagaraj P.
    Basu, Soumen
    Aminabhavi, Tejraj M.
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2020, 274
  • [9] 0D/2D Fe2O3 quantum dots/g-C3N4 for enhanced visible-light-driven photocatalysis
    Hao, Quanguo
    Mo, Zhao
    Chen, Zhigang
    She, Xiaojie
    Xu, Yuanguo
    Song, Yanhua
    Ji, Haiyan
    Wu, Xiangyang
    Yuan, Shouqi
    Xu, Hui
    Li, Huaming
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2018, 541 : 188 - 194
  • [10] Carbon dots/g-C3N4/ZnO nanocomposite as efficient visible-light driven photocatalyst for tetracycline total degradation
    Guo, Feng
    Shi, Weilong
    Guan, Weisheng
    Huang, Hui
    Liu, Yang
    SEPARATION AND PURIFICATION TECHNOLOGY, 2017, 173 : 295 - 303