Universal portfolios with side information

被引:214
|
作者
Cover, TM [1 ]
Ordentlich, E [1 ]
机构
[1] STANFORD UNIV,DEPT ELECT ENGN,STANFORD,CA 94305
基金
美国国家科学基金会;
关键词
Universal investment; universal data compression; portfolio theory; side information;
D O I
10.1109/18.485708
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a sequential investment algorithm, the mu-weighted universal portfolio with side information, which achieves, to first order in the exponent, the same wealth as the best side-information dependent investment strategy (the best state-constant rebalanced portfolio) determined in hindsight from observed market and side-information outcomes. This is an individual sequence result which shows that the difference between the exponential growth rates of wealth of the best state-constant rebalanced portfolio and the universal portfolio with side information is uniformly less than (d/(2n))log(n + 1) + (k/n) log 2 for every stock market and side-information sequence and for all time n. Here d = k(m - 1) is the number of degrees of freedom in the state-constant rebalanced portfolio with k states of side information and m stocks, The proof of this result establishes a close connection between universal investment and universal data compression.
引用
收藏
页码:348 / 363
页数:16
相关论文
共 50 条
  • [1] On Universal Portfolios with Continuous Side Information
    Bhatt, Alankrita
    Ryu, J. Jon
    Kim, Young-Han
    arXiv, 2022,
  • [2] On Universal Portfolios with Continuous Side Information
    Bhatt, Alankrita
    Ryu, J. Jon
    Kim, Young-Han
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 206, 2023, 206
  • [3] Universal Switching and Side Information Portfolios Under Transaction Costs Using Factor Graphs
    Bean, Andrew J.
    Singer, Andrew C.
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2012, 6 (04) : 351 - 365
  • [4] UNIVERSAL SWITCHING AND SIDE INFORMATION PORTFOLIOS UNDER TRANSACTION COSTS USING FACTOR GRAPHS
    Bean, Andrew J.
    Singer, Andrew C.
    2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 1986 - 1989
  • [5] Constant rebalanced portfolios and side-information
    Fagiuoli, E.
    Stella, F.
    Ventura, A.
    QUANTITATIVE FINANCE, 2007, 7 (02) : 161 - 173
  • [6] Adaptive universal portfolios
    O'Sullivan, Patrick
    Edelman, David
    EUROPEAN JOURNAL OF FINANCE, 2015, 21 (04): : 337 - 351
  • [7] An algorithm for universal lossless compression with side information
    Cai, Haixiao
    Kulkarni, Sanjeev R.
    Verdu, Sergio
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (09) : 4008 - 4016
  • [8] Universal interactive Gaussian quantization with side information
    Jha, Shubham K.
    Tyagi, Himanshu
    2020 IEEE INFORMATION THEORY WORKSHOP (ITW), 2021,
  • [9] A Note on Universal Bilinear Portfolios
    Garivaltis, Alex
    INTERNATIONAL JOURNAL OF FINANCIAL STUDIES, 2021, 9 (01): : 1 - 17
  • [10] Finite Memory Universal Portfolios
    Tavory, Ami
    Feder, Meir
    2008 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-6, 2008, : 1408 - +