A SVM Multi-Class Image Classification Method Based on DE and KNN in Smart City Management

被引:13
|
作者
Shu, Wanneng [1 ]
Cai, Ken [2 ]
机构
[1] South Cent Univ Nationalities, Coll Comp Sci, Wuhan 430074, Hubei, Peoples R China
[2] Zhongkai Univ Agr & Engn, Coll Automat, Guangzhou 510225, Guangdong, Peoples R China
关键词
Smart city management; support vector machine; image classification; differential evolution; K-nearest neighbor; SUPPORT VECTOR MACHINES; NETWORK;
D O I
10.1109/ACCESS.2019.2941321
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
When directly operated in an image, good results are always difficult to achieve via conventional methods because they have poor high-dimensional performance. Support vector machine (SVM) is a type of machine learning method with solid foundation that is developed based on traditional statistics. It is also a theory for statistical estimation and predictive learning of objects. This paper optimizes the structure of SVM classification tree with differential evolution (DE) and designs the corresponding DE algorithm to effectively solve the problem of image classification of complex background cases in smart city management systems. In the training process of SVM classification tree, it obtains an optimal two-class classification scheme in every node by means of DE, initially separates the classes that are easy to be separated and then the less easy ones, and finally adaptively generates the best classification tree. The simulation experiment proves that the proposed algorithm is effective when applied to smart city management systems.
引用
收藏
页码:132775 / 132785
页数:11
相关论文
共 50 条
  • [1] Feature subset selection for multi-class SVM based image classification
    Wang, Lei
    COMPUTER VISION - ACCV 2007, PT II, PROCEEDINGS, 2007, 4844 : 145 - 154
  • [2] Dendogram based SVM for multi-class classification
    Benabdeslem, Khalid
    Bennani, Younes
    ITI 2006: PROCEEDINGS OF THE 28TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY INTERFACES, 2006, : 173 - +
  • [3] CLASSIFICATION OF LIDAR DATA BASED ON MULTI-CLASS SVM
    Samadzadegan, F.
    Bigdeli, B.
    Ramzi, P.
    2010 CANADIAN GEOMATICS CONFERENCE AND SYMPOSIUM OF COMMISSION I, ISPRS CONVERGENCE IN GEOMATICS - SHAPING CANADA'S COMPETITIVE LANDSCAPE, 2010, 38
  • [4] Dendogram-based SVM for multi-class classification
    Benabdeslem, Khalid
    Bennani, Younès
    Journal of Computing and Information Technology, 2006, 14 (04) : 283 - 289
  • [5] MULTI-CLASS SVM FOR FORESTRY CLASSIFICATION
    Chehade, Nabil Hajj
    Boureau, Jean-Guy
    Vidal, Claude
    Zerubia, Josiane
    2009 16TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-6, 2009, : 1673 - +
  • [6] A projection multi-objective SVM method for multi-class classification
    Liu, Ling
    Martin-Barragan, Belen
    Prieto, Francisco J.
    COMPUTERS & INDUSTRIAL ENGINEERING, 2021, 158
  • [7] SVM Fuzzy Hierarchical Classification Method for multi-class problems
    Guernine, Taoufik
    Zeroual, Kacem
    2009 INTERNATIONAL CONFERENCE ON ADVANCED INFORMATION NETWORKING AND APPLICATIONS WORKSHOPS: WAINA, VOLS 1 AND 2, 2009, : 691 - 696
  • [8] Adaptive hierarchical multi-class SVM classifier for texture-based image classification
    Liu, S
    Yi, HR
    Chia, LT
    Rajan, D
    2005 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), VOLS 1 AND 2, 2005, : 1191 - 1194
  • [9] Study on Multi-class Text Classification Based on Improved SVM
    Li, Qiong
    Chen, Li
    PRACTICAL APPLICATIONS OF INTELLIGENT SYSTEMS, ISKE 2013, 2014, 279 : 519 - 526
  • [10] The Application Based on Decision Tree SVM for Multi-class Classification
    Hou Huifang
    Han Ping
    Cao Dan
    PROCEEDINGS OF THE 2015 2ND INTERNATIONAL CONFERENCE ON ELECTRICAL, COMPUTER ENGINEERING AND ELECTRONICS (ICECEE 2015), 2015, 24 : 1656 - 1660