An LMI method to demonstrate simultaneous stability using non-quadratic polynomial Lyapunov functions

被引:0
|
作者
Jarvis-Wloszek, Z [1 ]
Packard, AK [1 ]
机构
[1] Univ Calif Berkeley, Berkeley, CA 94720 USA
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider a nonlinear state transformation that allows us to work with non-quadratic polynomial Lyapunov functions. We use these polynomials to form Lyapunov functions to demonstrate simultaneous stability for a finite collection of linear systems. Under a weak definiteness condition, our main result, Theorem 3, shows that the minimum degree polynomial Lyapunov function that demonstrates simultaneous stability for a collection of linear systems can be written as a homogeneous polynomial.
引用
收藏
页码:287 / 292
页数:6
相关论文
共 50 条
  • [1] Stabilization by a relay control using non-quadratic Lyapunov functions
    Kader, Zohra
    Fiter, Christophe
    Hetel, Laurentiu
    Belkoura, Lotfi
    AUTOMATICA, 2018, 97 : 353 - 366
  • [2] Relaxed Stability Condition for Polynomial Fuzzy System: Non-Quadratic Lyapunov Function Approach
    Kim, Han Sol
    Park, Jin Bae
    Joo, Young Hoon
    2013 13TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2013), 2013, : 673 - 676
  • [3] Relaxed stability conditions for the Takagi-Sugeno fuzzy system using a polynomial non-quadratic Lyapunov function
    Kim, Han Sol
    Park, Jin Bae
    Joo, Young Hoon
    IET CONTROL THEORY AND APPLICATIONS, 2016, 10 (13): : 1590 - 1599
  • [4] Non-quadratic Lyapunov functions for performance analysis of saturated systems
    Hu, Tingshu
    Teel, Andrew R.
    Zaccarian, Luca
    2005 44TH IEEE CONFERENCE ON DECISION AND CONTROL & EUROPEAN CONTROL CONFERENCE, VOLS 1-8, 2005, : 8106 - 8111
  • [5] Dead-Zone Robust Adaptive Controller for FACTS Using Quadratic and Non-Quadratic Lyapunov Functions
    Hassan, Heba A.
    El-Metwally, Mahmoud
    Bendary, Ahmed F.
    2009 INTERNATIONAL CONFERENCE ON POWER ELECTRONICS AND DRIVE SYSTEMS, VOLS 1 AND 2, 2009, : 575 - +
  • [6] ISS for nonlinear systems in Takagi-Sugeno's form using quadratic and non-quadratic Lyapunov Functions
    Schulte, Horst
    Gauterin, Eckhard
    2015 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2015), 2015,
  • [7] LMI-based computation of optimal quadratic Lyapunov functions for odd polynomial systems
    Chesi, G
    Garulli, A
    Tesi, A
    Vicino, A
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2005, 15 (01) : 35 - 49
  • [8] An LMI characterization of polynomial parameter-dependent Lyapunov functions for robust stability
    Oliveira, R. C. L. F.
    Leite, V. J. S.
    de Oliveira, M. C.
    Peres, P. L. D.
    2005 44TH IEEE CONFERENCE ON DECISION AND CONTROL & EUROPEAN CONTROL CONFERENCE, VOLS 1-8, 2005, : 5024 - 5029
  • [9] Stability of Non-Polynomial Systems Using Differential Inclusions and Polynomial Lyapunov Functions
    Hexner, Gyoergy
    2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, : 2946 - 2951
  • [10] Novel robust adaptive control scheme using non-quadratic Lyapunov functions for higher order systems
    Hassan, HA
    Rao, MPRV
    EUROCON 2005: THE INTERNATIONAL CONFERENCE ON COMPUTER AS A TOOL, VOL 1 AND 2 , PROCEEDINGS, 2005, : 286 - 289