Inverse semigroup cohomology and crossed module extensions of semilattices of groups by inverse semigroups

被引:0
|
作者
Dokuchaev, Mikhailo [1 ]
Khrypchenko, Mykola [2 ]
Makuta, Mayumi [1 ]
机构
[1] Univ Sao Paulo, Inst Matemat & Estat, Rua Matao 1010, BR-05508090 Sao Paulo, SP, Brazil
[2] Univ Fed Santa Catarina, Dept Matemat, Campus Reitor Joao David Ferreira Lima, BR-88040900 Florianopolis, SC, Brazil
基金
巴西圣保罗研究基金会;
关键词
Crossed module; Crossed module extension; Cohomology; Inverse semigroup; Semilattice of groups; F -inverse monoid; MONOIDS; COEFFICIENTS;
D O I
10.1016/j.jalgebra.2021.11.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define and study the notion of a crossed module over an inverse semigroup and the corresponding 4-term exact sequences, called crossed module extensions. For a crossed module A over an F-inverse monoid T, we show that equivalence classes of admissible crossed module extensions of A by T are in a one-to-one correspondence with the elements of the cohomology group H3 <=(T1, A1). (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:341 / 397
页数:57
相关论文
共 50 条