EXISTENCE RESULTS FOR SECOND-ORDER NEUTRAL STOCHASTIC EQUATIONS DRIVEN BY ROSENBLATT PROCESS

被引:1
|
作者
Yahia, Rakia Ahmed [1 ]
Benchaabane, Abbes [2 ]
Zeghdoudi, Halim [2 ]
机构
[1] Abdelhafid Boussouf Univ Ctr, Lab Math & Leurs Interact MELILAB, Mila 43000, Algeria
[2] Univ 8 May 1945 Guelma, Lab Anal & Control Differential Equat ACED, Guelma, Algeria
来源
METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY | 2021年 / 27卷 / 04期
关键词
Controllability; Second-Order Stochastic System; Cosine Family; Rosenblatt process; Non-Lipschitz condition; FRACTIONAL BROWNIAN-MOTION; DIFFERENTIAL-EQUATIONS; DELAY DRIVEN; CONTROLLABILITY;
D O I
10.31392/MFAT-npu26_4.2021.11
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider a class of second-order impulsive stochastic functional differential equations driven simultaneously by a Rosenblatt process and a standard Brownian motion in a Hilbert space. We prove an existence and uniqueness result under non-Lipschitz condition which is weaker than Lipschitz one and we establish some conditions ensuring the controllability for the mild solution by means of the Banach fixed point principle. At the end we provide a practical example in order to illustrate the viability of our result.
引用
收藏
页码:384 / 400
页数:17
相关论文
共 50 条
  • [1] Existence results for impulsive neutral second-order stochastic evolution equations with nonlocal conditions
    Cui, Jing
    Yan, Litan
    MATHEMATICAL AND COMPUTER MODELLING, 2013, 57 (9-10) : 2378 - 2387
  • [2] Existence and Stability Results for Second-Order Stochastic Equations Driven by Fractional Brownian Motion
    Revathi, P.
    Sakthivel, R.
    Song, D. -Y.
    Ren, Yong
    Zhang, Pei
    TRANSPORT THEORY AND STATISTICAL PHYSICS, 2013, 42 (6-7): : 299 - 317
  • [3] EXISTENCE AND EXPONENTIAL STABILITY FOR NEUTRAL STOCHASTIC INTEGRO{DIFFERENTIAL EQUATIONS WITH IMPULSES DRIVEN BY A ROSENBLATT PROCESS
    Caraballo, Tomas
    Ogouyandjou, Carlos
    Allognissode, Fulbert Kuessi
    Diop, Mamadou Abdoul
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2020, 25 (02): : 507 - 528
  • [4] Neutral Fractional Stochastic Differential Equations Driven by Rosenblatt Process
    Xu Liping
    Li Zhi
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2018, 31 (02): : 159 - 176
  • [5] Well Posedness Results for Higher-Order Neutral Stochastic Differential Equations Driven by Poisson Jumps and Rosenblatt Process
    Ramkumar, K.
    Ravikumar, K.
    Anguraj, A.
    Ahmed, Hamdy M.
    FILOMAT, 2021, 35 (02) : 353 - 365
  • [6] Existence results for abstract impulsive second-order neutral functional differential equations
    Hernandez M, Eduardo
    Henriquez, Hernan R.
    McKibben, Mark A.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (07) : 2736 - 2751
  • [7] Existence results for second-order stochastic differential inclusions driven by Levy noise
    Blouhi, Tayeb
    Ferhat, Mohamed
    AFRIKA MATEMATIKA, 2019, 30 (3-4) : 529 - 549
  • [8] Wellposedness Results of Second-Order Neutral Stochastic Differential Equations With Random Impulses
    Ramkumar, K.
    Varshini, S.
    Banupriya, K.
    Ravikumar, K.
    JOURNAL OF APPLIED NONLINEAR DYNAMICS, 2024, 13 (04) : 723 - 734
  • [9] Exponential stability results for second-order impulsive neutral stochastic differential equations
    Gao, Dongdong
    Kuang, Daipeng
    Li, Jianli
    QUAESTIONES MATHEMATICAE, 2024, 47 (08) : 1631 - 1647
  • [10] Existence and approximate controllability results for second-order impulsive stochastic neutral differential systems
    Johnson, M.
    Vijayakumar, V.
    Shukla, Anurag
    Sooppy Nisar, Kottakkaran
    Hazarika, Bipan
    APPLICABLE ANALYSIS, 2024, 103 (02) : 481 - 505