Anisotropic Carbon Nanotube Structures with High Aspect Ratio Nanopores for Li-Ion Battery Anodes

被引:8
|
作者
Jessl, Sarah [1 ]
Engelke, Simon [1 ,2 ]
Copic, Davor [1 ]
Baumberg, Jeremy J. [3 ]
De Volder, Michael [1 ]
机构
[1] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England
[2] Univ Cambridge, Cambridge Graphene Ctr, Cambridge CB3 0FA, England
[3] Univ Cambridge, NanoPhoton Ctr, Cavendish Lab, Cambridge CB3 0HE, England
基金
英国工程与自然科学研究理事会;
关键词
carbon nanotubes; colloidal lithography; chemical vapor deposition; high-aspect ratio structures; submicron pores; ATOMIC LAYER DEPOSITION; MECHANICAL-PROPERTIES; SILICON; ELECTRODES; ARRAY; LITHOGRAPHY; PERFORMANCE; NANOWIRES;
D O I
10.1021/acsanm.1c01157
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Technological advances in membrane technology, catalysis, and electrochemical energy storage require the fabrication of controlled pore structures at ever smaller length scales. It is therefore important to develop processes allowing for the fabrication of materials with controlled submicron porous structures. We propose a combination of colloidal lithography and chemical vapor deposition of carbon nanotubes to create continuous straight pores with diameters down to 100 nm in structures with thicknesses of more than 300 mu m. These structures offer unique features, including continuous and parallel pores with aspect ratios in excess of 3000, a low pore tortuosity, good electrical conductivity, and electrochemical stability. We demonstrate that these structures can be used in Li-ion batteries by coating the carbon nanotubes with Si as an active anode material.
引用
收藏
页码:6299 / 6305
页数:7
相关论文
共 50 条
  • [1] Development of free standing anodes of high aspect ratio carbon materials for rechargeable Li-ion batteries
    Maheshwari, Priyanka H.
    Nithya, C.
    Jain, Shilpa
    Mathur, R. B.
    ELECTROCHIMICA ACTA, 2013, 92 : 55 - 63
  • [2] The nanocomposites of carbon nanotube with Sb and SnSb0.5 as Li-ion battery anodes
    Chen, WX
    Lee, JY
    Liu, ZL
    CARBON, 2003, 41 (05) : 959 - 966
  • [3] High-capacity graphene oxide/graphite/carbon nanotube composites for use in Li-ion battery anodes
    Zhang, Jingxian
    Xie, Zhengwei
    Li, Wen
    Dong, Shaoqiang
    Qu, Meizhen
    CARBON, 2014, 74 : 153 - 162
  • [4] High Performance Bi-Metallic Manganese Cobalt Oxide/Carbon Nanotube Li-ion Battery Anodes
    Palmieri, Alessandro
    Kashfi-Sadabad, Raana
    Yazdani, Sajad
    Pettes, Michael
    Mustain, William E.
    ELECTROCHIMICA ACTA, 2016, 213 : 620 - 625
  • [5] Carbon nanotube array anodes for high-rate Li-ion batteries
    Zhang, Hao
    Cao, Gaoping
    Wang, Zhiyong
    Yang, Yusheng
    Shi, Zujin
    Gu, Zhennan
    ELECTROCHIMICA ACTA, 2010, 55 (08) : 2873 - 2877
  • [6] High Aspect-ratio Germanium-Tin Alloy Nanowires: Potential as Highly Efficient Li-Ion Battery Anodes
    Garcia-Gil, Adria
    Biswas, Subhajit
    McNulty, David
    Roy, Ahin
    Ryan, Kevin M.
    Nicolosi, Valeria
    Holmes, Justin D.
    ADVANCED MATERIALS INTERFACES, 2022, 9 (29)
  • [7] High Performance Arsenic: Multiwall Carbon Nanotube Composite Anodes for Li-Ion Batteries
    Hays, Kevin A.
    Banek, Nathan A.
    Wagner, Michael J.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (07) : A1635 - A1643
  • [8] Carbon monolith scaffolding for high volumetric capacity silicon Li-ion battery anodes
    Barrett, Lawrence K.
    Fan, Juichin
    Laughlin, Kevin
    Baird, Sterling
    Harb, John N.
    Vanfleet, Richard R.
    Davis, Robert C.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2017, 35 (04):
  • [9] DNA metallization for high performance Li-ion battery anodes
    Kim, Dong Jun
    Woo, Min-Ah
    Jung, Ye Lim
    Bharathi, K. Kamala
    Park, Hyun Gyu
    Kim, Do Kyung
    Choi, Jang Wook
    NANO ENERGY, 2014, 8 : 17 - 24
  • [10] Li-Compound Anodes: A Classification for High-Performance Li-Ion Battery Anodes
    Nam, Ki-Hun
    Jeong, Sangmin
    Yu, Byeong-Chul
    Choi, Jeong-Hee
    Jeon, Ki-Joon
    Park, Cheol-Min
    ACS NANO, 2022, 16 (09) : 13704 - 13714